This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

2004 VJIMC, Problem 4

Let $f:\mathbb R\to\mathbb R$ be an infinitely differentiable function. Assume that for every $x\in\mathbb R$ there is an $n\in\mathbb N$ (depending on $x$) such that $$f^{(n)}(x)=0.$$Prove that $f$ is a polynomial.

2020 Jozsef Wildt International Math Competition, W5

Let $(a_n)_{n\ge1}$ and $(b_n)_{n\ge1}$ be positive real sequences such that $$\lim_{n\to\infty}\frac{a_{n+1}-a_n}n=a\in\mathbb R^*_+\enspace\text{and}\enspace\lim_{n\to\infty}\frac{b_{n+1}}{nb_n}=b\in\mathbb R^*_+$$ Compute $$\lim_{n\to\infty}\left(\frac{a_{n+1}}{\sqrt[n+1]{b_{n+1}}}-\frac{a_n}{\sqrt[n]{b_n}}\right)$$ [i]Proposed by D.M. Bătinețu-Giurgiu and Neculai Stanciu[/i]

2012 Centers of Excellency of Suceava, 4

Let be the sequence $ \left( J_n \right)_{n\ge 1} , $ where $ J_n=\int_{(1+n)^2}^{1+(1+n)^2} \sqrt{\frac{x-1-n-n^2}{x-1}} dx. $ [b]a)[/b] Study its monotony. [b]b)[/b] Calculate $ \lim_{n\to\infty } J_n\sqrt{n} . $ [i]Ion Bursuc[/i]

2011 N.N. Mihăileanu Individual, 3

Prove the inequalities $ 0<n\left( \sqrt[n]{2} -1 \right) -\left( \frac{1}{n+1} +\frac{1}{n+2} +\cdots +\frac{1}{n+n}\right) <\frac{1}{2n} , $ where $ n\ge 2. $ [i]Marius Cavachi[/i]

1995 VJIMC, Problem 3

Let $f:\mathbb R\to\mathbb R$ be a continuous function. Do there exist continuous functions $g:\mathbb R\to\mathbb R$ and $h:\mathbb R\to\mathbb R$ such that $f(x)=g(x)\sin x+h(x)\cos x$ holds for every $x\in\mathbb R$?

2013 Romania National Olympiad, 3

Given $a\in (0,1)$ and $C$ the set of increasing functions $f:[0,1]\to [0,\infty )$ such that $\int\limits_{0}^{1}{f(x)}dx=1$ . Determine: $(a)\underset{f\in C}{\mathop{\max }}\,\int\limits_{0}^{a}{f(x)dx}$ $(b)\underset{f\in C}{\mathop{\max }}\,\int\limits_{0}^{a}{{{f}^{2}}(x)dx}$

2025 District Olympiad, P1

Consider the sequence $(a_n)_{n\geq 1}$ given by $a_1=1$ and $a_{n+1}=\frac{a_n}{1+\sqrt{1+a_n}}$, for all $n\geq 1$. Show that $$\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n} = \lim_{n\rightarrow\infty}\sum_{k=1}^n \log_2(1+a_k)=2.$$ [i]Mathematical Gazette[/i]

2003 VJIMC, Problem 3

Find the limit $$\lim_{n\to\infty}\sqrt{1+2\sqrt{1+3\sqrt{\ldots+(n-1)\sqrt{1+n}}}}.$$

1997 Traian Lălescu, 4

Compute the limit: \[ \lim_{n\to\infty} \frac{1}{n^2}\sum\limits_{1\leq i <j\leq n}\sin \frac{i+j}{n}\].

1985 Traian Lălescu, 2.1

Let $ f:[-1,1]\longrightarrow\mathbb{R} $ a derivable function and a non-negative integer $ n. $ Show that there is a $ c\in [-1,1] $ so that: $$ \int_{-1}^1 x^{2n+1} f(x)dx =\frac{2}{2n+3}f'(c). $$

1997 IMC, 5

For postive integer $n$ consider the hyperplane \[ R_0^n = {x=(x_1x_2...x_n)\in\mathbb{R}^n : \sum\limits^n_{i=1}x_i=0} \] and the lattice \[ Z_0^n = \{y \in R^n_0 : \ (\forall i: y_i \in \mathbb{N})\} \] Define the quasi-norm in $\mathbb{R}^n$ by $\|x\|_p= \sqrt[p]{\sum\limits^{n}_{i=1}|x_i|^p}$ if $0<p<\infty$ and $\|x\|_{\infty} = \max\limits_i |x_i|$. (a) If $x\in R^n_0$ so that $\max x_i - \min x_i \le 1$ then prove that $\forall p \in [1,\infty], \forall y \in Z^n_0$ we have $\|x\|_p\le\|x+y\|_p$ (b) Prove that for every $p\in ]0,1[$, there exist $n \in \mathbb{N}, x\in R^n_0, y\in Z^n_0$ with $\max x_i - \min x_i \le 1$ and $\|x\|_p>\|x+y\|_p$

2014 Cezar Ivănescu, 2

Let be a function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that satisfies the relation $$ \sqrt{x^2-x+1}\le f(x) e^{f(x)}\le \sqrt{x^2+x+1} , $$ for any positive real number $ x. $ Prove that [b]a)[/b] $ \lim_{x\to\infty } f(x)=\infty . $ [b]b)[/b] $ \lim_{x\to\infty } (1/x)^{1/f(x)} =1/e. $

1998 VJIMC, Problem 2

Find the limit $$\lim_{n\to\infty}\left(\frac{\left(1+\frac1n\right)^n}e\right)^n.$$

1952 Miklós Schweitzer, 9

Let $ C$ denote the set of functions $ f(x)$, integrable (according to either Riemann or Lebesgue) on $ (a,b)$, with $ 0\le f(x)\le1$. An element $ \phi(x)\in C$ is said to be an "extreme point" of $ C$ if it can not be represented as the arithmetical mean of two different elements of $ C$. Find the extreme points of $ C$ and the functions $ f(x)\in C$ which can be obtained as "weak limits" of extreme points $ \phi_n(x)$ of $ C$. (The latter means that $ \lim_{n\to \infty}\int_a^b \phi_n(x)h(x)\,dx\equal{}\int_a^bf(x)h(x)\,dx$ holds for every integrable function $ h(x)$.)

2019 IMC, 6

Let $f,g:\mathbb R\to\mathbb R$ be continuous functions such that $g$ is differentiable. Assume that $(f(0)-g'(0))(g'(1)-f(1))>0$. Show that there exists a point $c\in (0,1)$ such that $f(c)=g'(c)$. [i]Proposed by Fereshteh Malek, K. N. Toosi University of Technology[/i]

Gheorghe Țițeica 2024, P2

Find all monotonic and twice differentiable functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $$f''+4f+3f^2+8f^3=0.$$

2016 IMC, 1

Let $f : \left[ a, b\right]\rightarrow\mathbb{R}$ be continuous on $\left[ a, b\right]$ and differentiable on $\left( a, b\right)$. Suppose that $f$ has infinitely many zeros, but there is no $x\in \left( a, b\right)$ with $f(x)=f'(x)=0$. (a) Prove that $f(a)f(b)=0$. (b) Give an example of such a function on $\left[ 0, 1\right]$. (Proposed by Alexandr Bolbot, Novosibirsk State University)

1998 IMC, 3

Given $ 0< c< 1$, we define $f(x) = \begin{cases} \frac{x}{c} & x \in [0,c] \\ \frac{1-x}{1-c} & x \in [c, 1] \end{cases} $ Let $f^{n}(x)=f(f(...f(x)))$ . Show that for each positive integer $n$, $f^{n}$ has a non-zero finite nunber of fixed points which aren't fixed points of $f^k$ for $k< n$.

2019 AMC 12/AHSME, 22

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\] for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\] In which of the following intervals does $m$ lie? $\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$

2006 Grigore Moisil Urziceni, 2

Consider a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that admits primitives. Prove that: $ \text{(i)} $ Every term (function) of the sequence functions $ \left( h_n\right)_{n\ge 2}:\mathbb{R}\longrightarrow\mathbb{R} $ defined, for any natural number $ n $ as $ h_n(x)=x^nf\left( x^3 \right) , $ is primitivable. $ \text{(ii)} $ The function $ \phi :\mathbb{R}\longrightarrow\mathbb{R} $ defined as $$ \phi (x) =\left\{ \begin{matrix} e^{-1/x^2} f(x),& \quad x\neq 0 \\ 0,& \quad x=0 \end{matrix} \right. $$ is primitivable. [i]Cristinel Mortici[/i]

2019 Teodor Topan, 3

Let be two real numbers $ a<b, $ a natural number $ n\ge 2, $ and a continuous function $ f:[a,b]\longrightarrow (0,\infty ) $ whose image contains $ 1 $ and that admits a primitive $ F:[a,b]\longrightarrow [a,b] . $ Prove that there is a real number $ c\in (a,b) $ such that $$ (\underbrace{F\circ\cdots\circ F}_{\text{n times}} )(b) -(\underbrace{F\circ\cdots\circ F}_{\text{n times}} )(a) =(f(c))^{n+1} (b-a) $$ [i]Vlad Mihaly[/i]

2014 Romania National Olympiad, 2

Find all derivable functions that have real domain and codomain, and are equal to their second functional power.

2025 Romania National Olympiad, 3

a) Let $a\in \mathbb{R}$ and $f \colon \mathbb{R} \to \mathbb{R}$ be a continuous function for which there exists an antiderivative $F \colon \mathbb{R} \to \mathbb{R} $, such that $F(x)+a\cdot f(x) \geq 0$, for any $x \in \mathbb{R}$, and$ \lim_{|x| \to \infty} \frac{F(x)}{e^{|\alpha \cdot x|}}=0$ holds for any $\alpha \in \mathbb{R}^*$. Prove that $F(x) \geq 0$ for all $x \in \mathbb{R}$. b) Let $n\geq 2$ be a positive integer, $g \in \mathbb{R}[X]$, $g = X^n + a_1X^{n-1}+ \dots + a_{n-1}X+a_n$ be a polynomial with all of its roots being real, and $f \colon \mathbb{R} \to \mathbb{R}$ a polynomial function such that $f(x)+a_1\cdot f'(x)+a_2\cdot f^{(2)}(x)+\dots+a_n\cdot f^{(n)}(x) \geq 0$ for any $x \in \mathbb{R}$. Prove that $f(x) \geq 0$ for all $x \in \mathbb{R}$.

1960 Miklós Schweitzer, 6

[b]6.[/b] Let $\{ n_k \}_{k=1}^{\infty}$ be a stricly increasing sequence of positive integers such that $\lim_{k \to \infty} n_k^{\frac {1}{2^k}}= \infty$ Show that the sum of the series $\sum_{k=1}^{\infty} \frac {1}{n_k} $ is an irrational number. [b](N. 19)[/b]

2004 District Olympiad, 4

Let $ a,b\in (0,1) $ and a continuous function $ f:[0,1]\longrightarrow\mathbb{R} $ with the property that $$ \int_0^x f(t)dt=\int_0^{ax} f(t)dt +\int_0^{bx} f(t)dt,\quad\forall x\in [0,1] . $$ [b]a)[/b] Show that if $ a+b<1, $ then $ f=0. $ [b]b)[/b] Show that if $ a+b=1, $ then $ f $ is constant.