Found problems: 884
2010 IMC, 5
Suppose that for a function $f: \mathbb{R}\to \mathbb{R}$ and real numbers $a<b$ one has $f(x)=0$ for all $x\in (a,b).$ Prove that $f(x)=0$ for all $x\in \mathbb{R}$ if
\[\sum^{p-1}_{k=0}f\left(y+\frac{k}{p}\right)=0\]
for every prime number $p$ and every real number $y.$
2020 Simon Marais Mathematics Competition, A3
Determine the set of real numbers $\alpha$ that can be expressed in the form \[\alpha=\sum_{n=0}^{\infty}\frac{x_{n+1}}{x_n^3}\]
where $x_0,x_1,x_2,\dots$ is an increasing sequence of real numbers with $x_0=1$.
2003 China Team Selection Test, 1
Let $S$ be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant $r$, such that there exists one way to colour all the points in $S$ with three colous so that the distance between any two points with same colour is less than $r$.
1974 Miklós Schweitzer, 7
Given a positive integer $ m$ and $ 0 < \delta <\pi$, construct a trigonometric polynomial $ f(x)\equal{}a_0\plus{} \sum_{n\equal{}1}^m (a_n \cos nx\plus{}b_n \sin nx)$ of degree $ m$ such that $ f(0)\equal{}1, \int_{ \delta \leq |x| \leq \pi} |f(x)|dx \leq c/m,$ and $ \max_{\minus{}\pi \leq x \leq \pi}|f'(x)| \leq c/{\delta}$, for some universal constant $ c$.
[i]G. Halasz[/i]
2005 Alexandru Myller, 3
Find all continous functions $f:[0,1]\to[0,2]$ with the property that $\left(\int_{\frac1{n+1}}^{\frac1n}xf(x)dx\right)^2=\int_{\frac1{n+1}}^{\frac1n}x^2f(x)dx, \forall n\in\mathbb N^*$.
[i]Gabriel Marsanu, Andrei Nedelcu[/i]
1986 Miklós Schweitzer, 8
Let $a_0=0$, $a_1, \ldots, a_k$ and $b_1, \ldots, b_k$ be arbitrary real numbers.
(i) Show that for all sufficiently large $n$ there exist polynomials $p_n$ of degree at most $n$ for which
$$p_n^{(i)} (-1)=a_i,\,\,\,\,\, p_n^{(i)} (1)=b_i,\,\,\,\,\, i=0, 1, \ldots, k$$
and
$$\max_{|x|\leq 1} |p_n (x)|\leq \frac{c}{n^2}\,\,\,\,\,\,\,\,\,\, (*)$$
where the constant $c$ depends only on the numbers $a_i, b_i$.
(ii) Prove that, in general, (*) cannot be replaced by the relation
$$\lim_{n\to\infty} n^2\cdot \max_{|x|\leq 1} |p_n (x)| = 0$$
[J. Szabados]
1995 IMC, 6
Let $p>1$. Show that there exists a constant $K_{p} >0$ such that for every $x,y\in \mathbb{R}$
with $|x|^{p}+|y|^{p}=2$, we have
$$(x-y)^{2} \leq K_{p}(4-(x+y)^{2}).$$
1967 Miklós Schweitzer, 4
Let $ a_1,a_2,...,a_N$ be positive real numbers whose sum equals $ 1$. For a natural number $ i$, let $ n_i$ denote the number
of $ a_k$ for which $ 2^{1-i} \geq a_k \geq 2^{-i}$ holds. Prove that
\[ \sum_{i=1}^{\infty} \sqrt{n_i2^{-i}} \leq 4+\sqrt{\log_2 N}.\]
[i]L. Leinder[/i]
1985 Miklós Schweitzer, 10
Show that any two intervals $A, B\subseteq \mathbb R$ of positive lengths can be countably disected into each other, that is, they can be written as countable unions $A=A_1\cup A_2\cup\ldots\,$ and $B=B_1\cup B_2\cup\ldots\,$ of pairwise disjoint sets, where $A_i$ and $B_i$ are congruent for every $i\in \mathbb N$ [Gy. Szabo]
1964 Putnam, B6
This is rather simple, but I liked it :).
Show that a disk cannot be partitioned into two congruent subsets.
2008 Teodor Topan, 4
Let $ (a_n)_{n \in \mathbb{N}^*}$ be a sequence of real positive numbers such that $ a_n>a_0,n\in \mathbb{N}$. Prove that $ \displaystyle\lim_{n\to\infty}\displaystyle\sum_{k\equal{}0}^{n}(\frac{a_k}{a_{n\minus{}k}})^k\equal{}\infty$.
2001 Miklós Schweitzer, 7
Let $e_1,\ldots, e_n$ be semilines on the plane starting from a common point. Prove that if there is no $u\not\equiv 0$ harmonic function on the whole plane that vanishes on the set $e_1\cup \cdots \cup e_n$, then there exists a pair $i,j$ of indices such that no $u\not\equiv 0$ harmonic function on the whole plane exists that vanishes on $e_i\cup e_j$.
2007 Gheorghe Vranceanu, 1
Let be a sequence $ \left( s_n\right)_{n\geqslant 0} $ of positive real numbers, with $ s_0 $ being the golden ratio, and defined as
$$ s_{n+2}=\frac{1+s_{n+1}}{s_n} . $$
Establish the necessary and sufficient condition under which $ \left( s_n\right)_{n\geqslant 0} $ is convergent.
2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 4
Let $\alpha,\ \beta$ be real numbers. Find the ranges of $\alpha,\ \beta$ such that the improper integral $\int_1^{\infty} \frac{x^{\alpha}\ln x}{(1+x)^{\beta}}$ converges.
1949 Miklós Schweitzer, 1
Let an infinite sequence of measurable sets be given on the interval $ (0,1)$ the measures of which are $ \geq \alpha>0$. Show that there exists a point of $ (0,1)$ which belongs to infinitely many terms of the sequence.
1998 IMC, 6
$f: (0,1) \rightarrow [0, \infty)$ is zero except at a countable set of points $a_{1}, a_2, a_3, ... $ . Let $b_n = f(a_n)$. Show that if $\sum b_{n}$ converges, then $f$ is differentiable at at least one point. Show that for any sequence $b_{n}$ of non-negative reals with $\sum b_{n} =\infty$ , we can find a sequence $a_{n}$ such that the function $f$ defined as above is nowhere differentiable.
2003 Gheorghe Vranceanu, 2
Let $ a $ be a positive real number and $ \left( x_n\right)_{n\ge 1} $ be a sequence of pairwise distinct real numbers satisfying the properties:
$ \text{(i) } x_n\in (0,a) , $ for any natural numbers $ n $
$ \text{(ii) } \left| x_n-x_m \right|\geqslant\frac{m+n}{amn} , $ for all pairs $ (m,n) $ of distinct natural numbers
Show that $ a\geqslant 2. $
2002 Romania National Olympiad, 2
Let $f:[0,1]\rightarrow\mathbb{R}$ be an integrable function such that:
\[0<\left\vert \int_{0}^{1}f(x)\, \text{d}x\right\vert\le 1.\]
Show that there exists $x_1\not= x_2, x_1,x_2\in [0,1]$, such that:
\[\int_{x_1}^{x_2}f(x)\, \text{d}x=(x_1-x_2)^{2002}\]
2005 District Olympiad, 2
Let $f:\mathbb{R}\rightarrow \mathbb{R}$ a continuous function such that for any $a,b\in \mathbb{R}$, with $a<b$ such that $f(a)=f(b)$, there exist some $c\in (a,b)$ such that $f(a)=f(b)=f(c)$. Prove that $f$ is monotonic over $\mathbb{R}$.
2008 Grigore Moisil Intercounty, 1
Let be a sequence of positive real numbers $ \left( a_n\right)_{n\ge 1} $ defined by the recurrence relation $ a_{n+1}=\ln \left(1+a_n\right) . $ Show that:
[b]1)[/b] $ \lim_{n\to\infty } a_n=0 $
[b]2)[/b] $ \lim_{n\to\infty } na_n=2 $
[b]3[/b] $ \lim_{n\to\infty } \frac{n(na_n-2)}{\ln n}=2/3 $
[i]Dorel Duca[/i] and [i]Dorian Popa[/i]
2007 Nicolae Coculescu, 2
Let $ F:\mathbb{R}\longrightarrow\mathbb{R} $ be a primitive with $ F(0)=0 $ of the function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ defined by $ f(x)=\frac{x}{1+e^x} , $ and let be a sequence $ \left( x_n \right)_{n\ge 0} $ such that $ x_0>0 $ and defined as $ x_n=F\left( x_{n-1} \right) . $
Calculate $ \lim_{n\to\infty } \frac{1}{n}\sum_{k=1}^n \frac{x_k}{\sqrt{x_{k+1}}} $
[i]Florian Dumitrel[/i]
2002 Miklós Schweitzer, 5
Denote by $\lambda (H)$ the Lebesgue outer measure of $H\subseteq \left[ 0,1\right]$. The horizontal and vertical sections of the set $A\subseteq [0, 1]\times [ 0, 1]$ are denoted by $A^y$ and $A_x$ respectively; that is, $A^y=\{ x\in [ 0, 1] \colon (x, y) \in A\}$ and $A_x=\{ y\in [ 0, 1]\colon (x,y)\in A\}$ for all $x,y\in [0,1]$.
(a) Is there a decomposition $A\cup B$ of the unit square $[0,1]\times [0,1]$ such that $A^y$ is the union of finitely many segments of total length less than $\frac12$ and $\lambda (B_x)\le \frac12$ for all $x, y\in [0,1]$?
(b) Is there a decomposition $A\cup B$ of the unit square $[0,1] \times [0,1]$ such that $A^y$ is the union of finitely many segments of total length not greater than $\frac12$ and $\lambda (B_x)<\frac12$ for all $x,y\in [0,1]$?
MIPT Undergraduate Contest 2019, 1.5 & 2.5
Prove the inequality
$$\sum _{k = 1} ^n (x_k - x_{k-1})^2 \geq 4 \sin ^2 \frac{\pi}{2n} \cdot \sum ^n _{k = 0} x_k ^2$$
for any sequence of real numbers $x_0, x_1, ..., x_n$ for which $x_0 = x_n = 0.$
1995 IMC, 12
Suppose that $(f_{n})_{n=1}^{\infty}$ is a sequence of continuous functions on the interval $[0,1]$ such that
$$\int_{0}^{1}f_{m}(x)f_{n}(x) dx=
\begin{cases}
1& \text{if}\;n=m\\
0 & \text{if} \;n\ne m
\end{cases}$$
and $\sup\{|f_{n}(x)|: x\in [0,1]\, \text{and}\, n=1,2,\dots\}< \infty$.
Show that there exists no subsequence $(f_{n_{k}})$ of $(f_{n})$ such that $\lim_{k\to \infty}f_{n_{k}}(x)$ exist
for all $x\in [0,1]$.
2018 District Olympiad, 3
Show that a continuous function $f : \mathbb{R} \to \mathbb{R}$ is increasing if and only if
\[(c - b)\int_a^b f(x)\, \text{d}x \le (b - a) \int_b^c f(x) \, \text{d}x,\]
for any real numbers $a < b < c$.