This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

1981 Miklós Schweitzer, 7

Let $ U$ be a real normed space such that, for an finite-dimensional, real normed space $ X,U$ contains a subspace isometrically isomorphic to $ X$. Prove that every (not necessarily closed) subspace $ V$ of $ U$ of finite codimension has the same property. (We call $ V$ of finite codimension if there exists a finite-dimensional subspace $ N$ of $ U$ such that $ V\plus{}N\equal{}U$.) [i]A. Bosznay[/i]

1975 Miklós Schweitzer, 8

Prove that if \[ \sum_{n=1}^m a_n \leq Na_m \;(m=1,2,...)\] holds for a sequence $ \{a_n \}$ of nonnegative real numbers with some positive integer $ N$, then $ \alpha_{i+p} \geq p \alpha_i$ for $ i,p=1,2,...,$ where \[ \alpha_i= \sum_{n=(i-1)N+1}^{iN} a_n \;(i=1,2,...)\ .\] [i]L. Leindler[/i]

2002 Miklós Schweitzer, 6

Let $K\subseteq \mathbb{R}$ be compact. Prove that the following two statements are equivalent to each other. (a) For each point $x$ of $K$ we can assign an uncountable set $F_x\subseteq \mathbb{R}$ such that $$\mathrm{dist}(F_x, F_y)\ge |x-y|$$ holds for all $x,y\in K$; (b) $K$ is of measure zero.

2008 Teodor Topan, 4

Let $ (a_n)_{n \in \mathbb{N}^*}$ be a sequence of real positive numbers such that $ a_n>a_0,n\in \mathbb{N}$. Prove that $ \displaystyle\lim_{n\to\infty}\displaystyle\sum_{k\equal{}0}^{n}(\frac{a_k}{a_{n\minus{}k}})^k\equal{}\infty$.

2014 Contests, 4

Let $a>1$ be a positive integer and $f\in \mathbb{Z}[x]$ with positive leading coefficient. Let $S$ be the set of integers $n$ such that \[n \mid a^{f(n)}-1.\] Prove that $S$ has density $0$; that is, prove that $\lim_{n\rightarrow \infty} \frac{|S\cap \{1,...,n\}|}{n}=0$.

2014 Miklós Schweitzer, 4

For a positive integer $n$, define $f(n)$ to be the number of sequences $(a_1,a_2,\dots,a_k)$ such that $a_1a_2\cdots a_k=n$ where $a_i\geq 2$ and $k\ge 0$ is arbitrary. Also we define $f(1)=1$. Now let $\alpha>1$ be the unique real number satisfying $\zeta(\alpha)=2$, i.e $ \sum_{n=1}^{\infty}\frac{1}{n^\alpha}=2 $ Prove that [list] (a) \[ \sum_{j=1}^{n}f(j)=\mathcal{O}(n^\alpha) \] (b) There is no real number $\beta<\alpha$ such that \[ \sum_{j=1}^{n}f(j)=\mathcal{O}(n^\beta) \] [/list]

1975 Miklós Schweitzer, 7

Let $ a<a'<b<b'$ be real numbers and let the real function $ f$ be continuous on the interval $ [a,b']$ and differentiable in its interior. Prove that there exist $ c \in (a,b), c'\in (a',b')$ such that \[ f(b)\minus{}f(a)\equal{}f'(c)(b\minus{}a),\] \[ f(b')\minus{}f(a')\equal{}f'(c')(b'\minus{}a'),\] and $ c<c'$. [i]B. Szokefalvi Nagy[/i]

2010 N.N. Mihăileanu Individual, 2

Let be a sequence of functions $ \left( f_n \right)_{n\ge 2}:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ defined, for each $ n\ge 2, $ as $$ f_n(x)=2nx^{2+n} -2(n+2)x^{1+n} +(2+n)x +1. $$ [b]a)[/b] Prove that $ f_n $ has an unique local maxima $ x_n, $ for any $ n\ge 2. $ [b]b)[/b] Show that $ 1=\lim_{n\to\infty } x_n. $ [i]Cătălin Zîrnă[/i]

2012 Miklós Schweitzer, 7

Let $\Gamma$ be a simple curve, lying inside a circle of radius $r$, rectifiable and of length $\ell$. Prove that if $\ell > kr\pi$, then there exists a circle of radius $r$ which intersects $\Gamma$ in at least $k+1$ distinct points.

1986 Traian Lălescu, 1.1

Let $ a $ be a positive real number. Calculate $ \lim_{n\to\infty} \frac{a^n}{(1+a)(1+a^2)\cdots (1+a^n)} . $

2011 District Olympiad, 3

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a continuous and nondecreasing function. [b]a)[/b] Show that the sequence $ \left( \frac{1}{2^n}\sum_{i=1}^{2^n} f\left(\frac{i}{2^n}\right) \right)_{n\ge 1} $ is nonincreasing. [b]b)[/b] Prove that, if there exists some natural index at which the sequence above is equal to $ \int_0^1 f(x)dx, $ then $ f $ is constant.

2007 Miklós Schweitzer, 5

Let $D=\{ (x,y) \mid x>0, y\neq 0\}$ and let $u\in C^1(\overline {D})$ be a bounded function that is harmonic on $D$ and for which $u=0$ on the $y$-axis. Prove that $u$ is identically zero. (translated by Miklós Maróti)

2005 Miklós Schweitzer, 11

Let $E: R^n \backslash \{0\} \to R^+$ be a infinitely differentiable, quadratic positive homogeneous (that is, for any λ>0 and $p \in R^n \backslash \{0\}$ , $E (\lambda p) = \lambda^2 E (p)$). Prove that if the second derivative of $E''(p): R^n \times R^n \to R$ is a non-degenerate bilinear form at any point $p \in R^n \backslash \{0\}$, then $E''(p)$ ($p \in R^n \backslash \{0\}$) is positive definite.

KoMaL A Problems 2017/2018, A. 723

Let $f:\mathbb{R}\rightarrow \mathbb{R}$ be a continuous function such that the limit $$g(x)=\lim_{h\rightarrow 0}{\frac{f(x+h)-2f(x)+f(x-h)}{h^2}}$$ exists for all real $x$. Prove that $g(x)$ is constant if and only if $f(x)$ is a polynomial function whose degree is at most $2$.

2023 SEEMOUS, P2

For the sequence \[S_n=\frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}},\]find the limit \[\lim_{n\to\infty}n\left(n\cdot\left(\log(1+\sqrt{2})-S_n\right)-\frac{1}{2\sqrt{2}(1+\sqrt{2})}\right).\]

2001 SNSB Admission, 3

Let be an $ n\times n $ positive-definite symmetric real matrix $ A. $ Prove the following equality. $$ \tiny\int_{\mathbb{R}^n} \exp\left( -\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n\end{pmatrix}^\intercal A\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n\end{pmatrix}\right) dx_1dx_2\cdots dx_n=\normalsize\frac{\pi^{n/2}}{\sqrt{\det A} } $$

2007 Mathematics for Its Sake, 1

Find the number of extrema of the function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ defined as $$ f(x)=\prod_{j=1}^n (x-j)^j, $$ where $ n $ is a natural number.

2023 Romania National Olympiad, 4

We consider a function $f:\mathbb{R} \rightarrow \mathbb{R}$ for which there exist a differentiable function $g : \mathbb{R} \rightarrow \mathbb{R}$ and exist a sequence $(a_n)_{n \geq 1}$ of real positive numbers, convergent to $0,$ such that \[ g'(x) = \lim_{n \to \infty} \frac{f(x + a_n) - f(x)}{a_n}, \forall x \in \mathbb{R}. \] a) Give an example of such a function f that is not differentiable at any point $x \in \mathbb{R}.$ b) Show that if $f$ is continuous on $\mathbb{R}$, then $f$ is differentiable on $\mathbb{R}.$

2003 IMC, 6

Let $(a_{n})$ be the sequence defined by $a_{0}=1,a_{n+1}=\sum_{k=0}^{n}\dfrac{a_k}{n-k+2}$. Find the limit \[\lim_{n \rightarrow \infty} \sum_{k=0}^{n}\dfrac{a_{k}}{2^{k}},\] if it exists.

1962 Miklós Schweitzer, 6

Let $ E$ be a bounded subset of the real line, and let $ \Omega$ be a system of (non degenerate) closed intervals such that for each $ x \in E$ there exists an $ I \in \Omega$ with left endpoint $ x$. Show that for every $ \varepsilon > 0$ there exists a finite number of pairwise non overlapping intervals belonging to $ \Omega$ that cover $ E$ with the exception of a subset of outer measure less than $ \varepsilon$. [J. Czipszer]

2009 Harvard-MIT Mathematics Tournament, 5

Compute \[\lim_{h\to 0}\dfrac{\sin(\frac{\pi}{3}+4h)-4\sin(\frac{\pi}{3}+3h)+6\sin(\frac{\pi}{3}+2h)-4\sin(\frac{\pi}{3}+h)+\sin(\frac{\pi}{3})}{h^4}.\]

2011 IMC, 4

Let $A_1,A_2,\dots, A_n$ be finite, nonempty sets. Define the function \[f(t)=\sum_{k=1}^n \sum_{1\leq i_1<i_2<\dots<i_k\leq n} (-1)^{k-1}t^{|A_{i_1}\cup A_{i_2}\cup \dots\cup A_{i_k}|}.\] Prove that $f$ is nondecreasing on $[0,1].$ ($|A|$ denotes the number of elements in $A.$)

2014 Romania National Olympiad, 3

Let $ f:[1,\infty )\longrightarrow (0,\infty ) $ be a continuous function satisfying the following properties: $ \text{(i)}\exists\lim_{x\to\infty } \frac{f(x)}{x}\in\overline{\mathbb{R}} $ $ \text{(ii)}\exists\lim_{x\to\infty } \frac{1}{x}\int_1^x f(t)dt\in\mathbb{R}. $ [b]a)[/b] Show that $ \lim_{x\to\infty } \frac{f(x)}{x}=0. $ [b]b)[/b] Prove that $ \lim_{x\to\infty } \frac{1}{x^2}\int_1^x f^2(t)dt=0. $

1987 Traian Lălescu, 1.4

[b]a)[/b] Determine all sequences of real numbers $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ that satisfy $ x_{n+2}+x_{n+1}=x_n, $ for any nonnegative integer $ n. $ [b]b)[/b] If $ y_k>0 $ and $ y_k^k=y_k+k, $ for all naturals $ k, $ calculate $ \lim_{n\to\infty }\frac{\ln n}{n\left( x_n-1\right)} . $

2007 Nicolae Coculescu, 2

Let be two sequences $ \left( a_n \right)_{n\ge 0} , \left( b_n \right)_{n\ge 0} $ satisfying the following system: $$ \left\{ \begin{matrix} a_0>0,& \quad a_{n+1} =a_ne^{-a_n} , &\quad\forall n\ge 0 \\ b_{0}\in (0,1) ,& \quad b_{n+1} =b_n\cos \sqrt{b_n} ,& \quad\forall n\ge 0 \end{matrix} \right. $$ Calculate $ \lim_{n\to\infty} \frac{a_n}{b_n} . $ [i]Florian Dumitrel[/i]