This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 884

1951 Miklós Schweitzer, 4

Prove that the infinite series $ 1\minus{}\frac{1}{x(x\plus{}1)}\minus{}\frac{x\minus{}1}{2!x^2(2x\plus{}1)}\minus{}\frac{(x\minus{}1)(2x\minus{}1)}{3!(x^3(3x\plus{}1))}\minus{}\frac{(x\minus{}1)(2x\minus{}1)(3x\minus{}1)}{4!x^4(4x\plus{}1)}\minus{}\cdots$ is convergent for every positive $ x$. Denoting its sum by $ F(x)$, find $ \lim_{x\to \plus{}0}F(x)$ and $ \lim_{x\to \infty}F(x)$.

1982 Putnam, B5

For each $x>e^e$ define a sequence $S_x=u_0,u_1,\ldots$ recursively as follows: $u_0=e$, and for $n\ge0$, $u_{n+1}=\log_{u_n}x$. Prove that $S_x$ converges to a number $g(x)$ and that the function $g$ defined in this way is continuous for $x>e^e$.

2003 IMC, 2

Evaluate $\lim_{x\rightarrow 0^+}\int^{2x}_x\frac{\sin^m(t)}{t^n}dt$. ($m,n\in\mathbb{N}$)

1995 IMC, 11

a) Prove that every function of the form $$f(x)=\frac{a_{0}}{2}+\cos(x)+\sum_{n=2}^{N}a_{n}\cos(nx)$$ with $|a_{0}|<1$ has positive as well as negative values in the period $[0,2\pi)$. b) Prove that the function $$F(x)=\sum_{n=1}^{100}\cos(n^{\frac{3}{2}}x)$$ has at least $40$ zeroes in the interval $(0,1000)$.

2019 Teodor Topan, 2

Let $ \left( a_n \right)_{n\ge 1} $ be an arithmetic progression with $ a_1=1 $ and natural ratio. [b]a)[/b] Prove that $$ a_n^{1/a_k} <1+\sqrt{\frac{2\left( a_n-1 \right)}{a_k\left( a_k -1 \right)}} , $$ for any natural numbers $ 2\le k\le n. $ [b]b)[/b] Calculate $ \lim_{n\to\infty } \frac{1}{a_n}\sum_{k=1}^n a_n^{1/a_k} . $ [i]Nicolae Bourbăcuț[/i]

2008 Harvard-MIT Mathematics Tournament, 9

([b]7[/b]) Evaluate the limit $ \lim_{n\rightarrow\infty} n^{\minus{}\frac{1}{2}\left(1\plus{}\frac{1}{n}\right)} \left(1^1\cdot2^2\cdot\cdots\cdot n^n\right)^{\frac{1}{n^2}}$.

2010 N.N. Mihăileanu Individual, 2

Let be a sequence of functions $ \left( f_n \right)_{n\ge 2}:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ defined, for each $ n\ge 2, $ as $$ f_n(x)=2nx^{2+n} -2(n+2)x^{1+n} +(2+n)x +1. $$ [b]a)[/b] Prove that $ f_n $ has an unique local maxima $ x_n, $ for any $ n\ge 2. $ [b]b)[/b] Show that $ 1=\lim_{n\to\infty } x_n. $ [i]Cătălin Zîrnă[/i]

2007 IberoAmerican Olympiad For University Students, 3

Let $f:\mathbb{R}\to\mathbb{R}^+$ be a continuous and periodic function. Prove that for all $\alpha\in\mathbb{R}$ the following inequality holds: $\int_0^T\frac{f(x)}{f(x+\alpha)}dx\ge T$, where $T$ is the period of $f(x)$.

2002 Romania National Olympiad, 2

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function that has limits at any point and has no local extrema. Show that: $a)$ $f$ is continuous; $b)$ $f$ is strictly monotone.

1999 Romania National Olympiad, 3

Let $f:\mathbb{R} \to \mathbb{R}$ be a monotonic function and $a,b,c,d$ be real numbers with $a$ and $c$ nonzero. Prove that if the equalities [center]$\int\limits_x^{x+\sqrt{3}} f(t) \mathrm{d}t=ax+b$ and $\int\limits_x^{x+\sqrt{2}} f(t) \mathrm{d}t=cx+d$[/center] hold for every real number $x,$ then $f$ is a polynomial function of degree one.

KoMaL A Problems 2024/2025, A. 905

We say that a strictly increasing sequence of positive integers $n_1, n_2,\ldots$ is [i]non-decelerating[/i] if $n_{k+1}-n_k\le n_{k+2}-n_{k+1}$ holds for all positive integers $k$. We say that a strictly increasing sequence $n_1, n_2, \ldots$ is [i]convergence-inducing[/i], if the following statement is true for all real sequences $a_1, a_2, \ldots$: if subsequence $a_{m+n_1}, a_{m+n_2}, \ldots$ is convergent and tends to $0$ for all positive integers $m$, then sequence $a_1, a_2, \ldots$ is also convergent and tends to $0$. Prove that a non-decelerating sequence $n_1, n_2,\ldots$ is convergence-inducing if and only if sequence $n_2-n_1$, $n_3-n_2$, $\ldots$ is bounded from above. [i]Proposed by András Imolay[/i]

2023 SEEMOUS, P2

For the sequence \[S_n=\frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots+\frac{1}{\sqrt{n^2+n^2}},\]find the limit \[\lim_{n\to\infty}n\left(n\cdot\left(\log(1+\sqrt{2})-S_n\right)-\frac{1}{2\sqrt{2}(1+\sqrt{2})}\right).\]

2011 Laurențiu Duican, 2

$ \lim_{n\to\infty } \int_{\pi }^{2\pi } \frac{|\sin (nx) +\cos (nx)|}{ x} dx ? $ [i]Gabriela Boeriu[/i]

2022 Taiwan TST Round 3, A

Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$

2000 Romania National Olympiad, 1

Let $ a\in (1,\infty) $ and a countinuous function $ f:[0,\infty)\longrightarrow\mathbb{R} $ having the property: $$ \lim_{x\to \infty} xf(x)\in\mathbb{R} . $$ [b]a)[/b] Show that the integral $ \int_1^{\infty} \frac{f(x)}{x}dx $ and the limit $ \lim_{t\to\infty} t\int_{1}^a f\left( x^t \right) dx $ both exist, are finite and equal. [b]b)[/b] Calculate $ \lim_{t\to \infty} t\int_1^a \frac{dx}{1+x^t} . $

1971 Miklós Schweitzer, 9

Given a positive, monotone function $ F(x)$ on $ (0, \infty)$ such that $ F(x)/x$ is monotone nondecreasing and $ F(x)/x^{1+d}$ is monotone nonincreasing for some positive $ d$, let $ \lambda_n >0$ and $ a_n \geq 0 , \;n \geq 1$. Prove that if \[ \sum_{n=1}^{\infty} \lambda_n F \left( a_n \sum _{k=1}^n \frac{\lambda_k}{\lambda_n} \right) < \infty,\] or \[ \sum_{n=1}^{\infty} \lambda_n F \left( \sum _{k=1}^n a_k \frac{\lambda_k}{\lambda_n} \right) < \infty,\] then $ \sum_{n=1}^ {\infty} a_n$ is convergent. [i]L. Leindler[/i]

1994 IMC, 6

Find $$\lim_{N\to\infty}\frac{\ln^2 N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln (N-k)}$$

2009 Today's Calculation Of Integral, 440

For $ a>1$, find $ \lim_{n\to\infty} \int_0^a \frac{e^x}{1\plus{}x^n}dx.$

2007 Nicolae Coculescu, 3

Let be the sequence $ \left( a_n \right)_{n\ge 0} $ of positive real numbers defined by $$ a_n=1+\frac{a_{n-1}}{n} ,\quad\forall n\ge 1. $$ Calculate $ \lim_{n\to\infty } a_n ^n . $ [i]Florian Dumitrel[/i]

1968 Miklós Schweitzer, 9

Let $ f(x)$ be a real function such that \[ \lim_{x \rightarrow \plus{}\infty} \frac{f(x)}{e^x}\equal{}1\] and $ |f''(x)|\leq c|f'(x)|$ for all sufficiently large $ x$. Prove that \[ \lim_{x \rightarrow \plus{}\infty} \frac{f'(x)}{e^x}\equal{}1.\] [i]P. Erdos[/i]

2005 Alexandru Myller, 4

Let $(a_n)_n$ be a sequence of positive irational numbers. a) Prove that for every $n\in\mathbb N^*$, the binomial development $(1+a_n)^n$ admits a unique maximum term and determine its rank $r_n\in\{1,2,\ldots,n+1\}$. b) We consider the sequences $x_n=a_n\sqrt n, n\in\mathbb N^*$ and $y_n=(1+a_n)^{r_n}, n\in\mathbb N^*$. Prove that $(x_n)_n$ is convergent if and only if the sequence $(y_n)_n$ is convergent. [i]Eugen Paltanea[/i]

1983 Putnam, A6

Let $$F(x)=\frac{x^4}{\exp(x^3)}\int^x_0\int^{x-u}_0\exp(u^3+v^3)dvdu.$$Find $\lim_{x\to\infty}F(x)$ or prove that it does not exist.

1998 VJIMC, Problem 4-M

A function $f:\mathbb R\to\mathbb R$ has the property that for every $x,y\in\mathbb R$ there exists a real number $t$ (depending on $x$ and $y$) such that $0<t<1$ and $$f(tx+(1-t)y)=tf(x)+(1-t)f(y).$$ Does it imply that $$f\left(\frac{x+y}2\right)=\frac{f(x)+f(y)}2$$ for every $x,y\in\mathbb R$?

2021 Brazil Undergrad MO, Problem 3

Find all positive integers $k$ for which there is an irrational $\alpha>1$ and a positive integer $N$ such that $\left\lfloor\alpha^{n}\right\rfloor$ is of the form $m^2-k$ com $m \in \mathbb{Z}$ for every integer $n>N$.

2004 Putnam, B5

Evaluate $\lim_{x\to 1^-}\prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^n}\right)^{x^n}$.