This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 307

2018 Irish Math Olympiad, 9

The sequence of positive integers $a_1, a_2, a_3, ...$ satisfies $a_{n+1} = a^2_{n} + 2018$ for $n \ge 1$. Prove that there exists at most one $n$ for which $a_n$ is the cube of an integer.

1987 Bulgaria National Olympiad, Problem 4

The sequence $(x_n)_{n\in\mathbb N}$ is defined by $x_1=x_2=1$, $x_{n+2}=14x_{n+1}-x_n-4$ for each $n\in\mathbb N$. Prove that all terms of this sequence are perfect squares.

1990 Tournament Of Towns, (271) 5

The numerical sequence $\{x_n\}$ satisfies the condition $$x_{n+1}=|x_n|-x_{n-1}$$ for all $n > 1$. Prove that the sequence is periodic with period $9$, i.e. for any $n > 1$ we have $x_n = x_{n+9}$. (M Kontsevich, Moscow)

2022 New Zealand MO, 5

The sequence $x_1, x_2, x_3, . . .$ is defined by $x_1 = 2022$ and $x_{n+1}= 7x_n + 5$ for all positive integers $n$. Determine the maximum positive integer $m$ such that $$\frac{x_n(x_n - 1)(x_n - 2) . . . (x_n - m + 1)}{m!}$$ is never a multiple of $7$ for any positive integer $n$.

2020 New Zealand MO, 8

For a positive integer $x$, define a sequence $a_0, a_1, a_2, . . .$ according to the following rules: $a_0 = 1$, $a_1 = x + 1$ and $$a_{n+2} = xa_{n+1} - a_n$$ for all $n \ge 0$. Prove that there exist infinitely many positive integers x such that this sequence does not contain a prime number.

1992 IMO Longlists, 19

Denote by $a_n$ the greatest number that is not divisible by $3$ and that divides $n$. Consider the sequence $s_0 = 0, s_n = a_1 +a_2+\cdots+a_n, n \in \mathbb N$. Denote by $A(n)$ the number of all sums $s_k \ (0 \leq k \leq 3^n, k \in \mathbb N_0)$ that are divisible by $3$. Prove the formula \[A(n) = 3^{n-1} + 2 \cdot 3^{(n/2)-1} \cos \left(\frac{n\pi}{6}\right), \qquad n\in \mathbb N_0.\]

1979 IMO, 3

Let $A$ and $E$ be opposite vertices of an octagon. A frog starts at vertex $A.$ From any vertex except $E$ it jumps to one of the two adjacent vertices. When it reaches $E$ it stops. Let $a_n$ be the number of distinct paths of exactly $n$ jumps ending at $E$. Prove that: \[ a_{2n-1}=0, \quad a_{2n}={(2+\sqrt2)^{n-1} - (2-\sqrt2)^{n-1} \over\sqrt2}. \]

1979 IMO Shortlist, 19

Consider the sequences $(a_n), (b_n)$ defined by \[a_1=3, \quad b_1=100 , \quad a_{n+1}=3^{a_n} , \quad b_{n+1}=100^{b_n} \] Find the smallest integer $m$ for which $b_m > a_{100}.$

2013 Denmark MO - Mohr Contest, 3

A sequence $x_0, x_1, x_2, . . .$ is given by $x_0 = 8$ and $x_{n+1} =\frac{1 + x_n}{1- x_n}$ for $n = 0, 1, 2, . . . .$ Determine the number $x_{2013}$.

2020 Kyiv Mathematical Festival, 1.1

(a) Find the numbers $a_0,. . . , a_{100}$, such that $a_0 = 0, a_{100} = 1$ and for all $k = 1,. . . , 99$ : $$a_k = \frac12 a_{k- 1} + \frac12 a_{k+1 }$$ (b) Find the numbers $a_0,. . . , a_{100}$, such that $a_0 = 0, a_{100} = 1$ and for all $k = 1,. . . , 99$ : $$a_k = 1+\frac12 a_{k- 1} + \frac12 a_{k+1 }$$.

2012 Indonesia TST, 1

The sequence $a_i$ is defined as $a_1 = 2, a_2 = 3$, and $a_{n+1} = 2a_{n-1}$ or $a_{n+1} = 3a_n - 2a_{n-1}$ for all integers $n \ge 2$. Prove that no term in $a_i$ is in the range $[1612, 2012]$.

2012 China Northern MO, 5

Let $\{a_n\}$ be the sequance with $a_0=0$, $a_n=\frac{1}{a_{n-1}-2}$ ($n\in N_+$). Select an arbitrary term $a_k$ in the sequence $\{a_n\}$ and construct the sequence $\{b_n\}$: $b_0=a_k$, $b_n=\frac{2b_{n-1}+1} {b_{n-1}}$ ($n\in N_+$) . Determine whether the sequence $\{b_n\}$ is a finite sequence or an infinite sequence and give proof.

1965 Dutch Mathematical Olympiad, 1

We consider the sequence $t_1,t_2,t_3,...$ By $P_n$ we mean the product of the first $n$ terms of the sequence. Given that $t_{n+1} = t_n \cdot t_{n+2}$ for each $n$, and that $P_{40} = P_{80} = 8$. Calculate $t_1$ and $t_2$.

2020 Regional Olympiad of Mexico Northeast, 1

Let $a_1=2020$ and let $a_{n+1}=\sqrt{2020+a_n}$ for $n\ge 1$. How much is $\left\lfloor a_{2020}\right\rfloor$? Note: $\lfloor x\rfloor$ denotes the integer part of a number, that is that is, the immediate integer less than $x$. For example, $\lfloor 2.71\rfloor=2$ and $\lfloor \pi\rfloor=3$.

1987 IMO Longlists, 19

How many words with $n$ digits can be formed from the alphabet $\{0, 1, 2, 3, 4\}$, if neighboring digits must differ by exactly one? [i]Proposed by Germany, FR.[/i]

1969 IMO Shortlist, 28

$(GBR 5)$ Let us define $u_0 = 0, u_1 = 1$ and for $n\ge 0, u_{n+2} = au_{n+1}+bu_n, a$ and $b$ being positive integers. Express $u_n$ as a polynomial in $a$ and $b.$ Prove the result. Given that $b$ is prime, prove that $b$ divides $a(u_b -1).$

2009 Tournament Of Towns, 3

For each positive integer $n$, denote by $O(n)$ its greatest odd divisor. Given any positive integers $x_1 = a$ and $x_2 = b$, construct an in nite sequence of positive integers as follows: $x_n = O(x_{n-1} + x_{n-2})$, where $n = 3,4,...$ (a) Prove that starting from some place, all terms of the sequence are equal to the same integer. (b) Express this integer in terms of $a$ and $b$.

2005 Korea Junior Math Olympiad, 3

For a positive integer $K$, de fine a sequence, $\{a_n\}$, as following: $a_1 = K$ and $a_{n+1} =a_n -1$ if $a_n$ is even $a_{n+1} =\frac{a_n - 1}{2}$ if $a_n$ is odd , for all $n \ge 1$. Find the smallest value of $K$, which makes $a_{2005}$ the first term equal to $0$.

1993 Abels Math Contest (Norwegian MO), 3

The Fermat-numbers are defined by $F_n = 2^{2^n}+1$ for $n\in N$. (a) Prove that $F_n = F_{n-1}F_{n-2}....F_1F_0 +2$ for $n > 0$. (b) Prove that any two different Fermat numbers are coprime

2004 Federal Competition For Advanced Students, P2, 4

Show that there is an infinite sequence $a_1,a_2,...$ of natural numbers such that $a^2_1+a^2_2+ ...+a^2_N$ is a perfect square for all $N$. Give a recurrent formula for one such sequence.

1984 IMO Shortlist, 19

The harmonic table is a triangular array: $1$ $\frac 12 \qquad \frac 12$ $\frac 13 \qquad \frac 16 \qquad \frac 13$ $\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$ Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.

1984 IMO Longlists, 14

Let $c$ be a positive integer. The sequence $\{f_n\}$ is defined as follows: \[f_1 = 1, f_2 = c, f_{n+1} = 2f_n - f_{n-1} + 2 \quad (n \geq 2).\] Show that for each $k \in \mathbb N$ there exists $r \in \mathbb N$ such that $f_kf_{k+1}= f_r.$

1997 Belarusian National Olympiad, 2

A sequence $(a_n)_{-\infty}^{-\infty}$ of zeros and ones is given. It is known that $a_n = 0$ if and only if $a_{n-6} + a_{n-5} +...+ a_{n-1}$ is a multiple of $3$, and not all terms of the sequence are zero. Determine the maximum possible number of zeros among $a_0,a_1,...,a_{97}$.

1984 IMO Longlists, 16

The harmonic table is a triangular array: $1$ $\frac 12 \qquad \frac 12$ $\frac 13 \qquad \frac 16 \qquad \frac 13$ $\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$ Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.

1998 North Macedonia National Olympiad, 5

The sequence $(a_n)$ is defined by $a_1 =\sqrt2$ and $a_{n+1} =\sqrt{2-\sqrt{4-a_n^2}}$. Let $b_n =2^{n+1}a_n$. Prove that $b_n \le 7$ and $b_n < b_{n+1}$ for all $n$.