This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 307

1958 November Putnam, A1

Let $f(m,1)=f(1,n)=1$ for $m\geq 1, n\geq 1$ and let $f(m,n)=f(m-1, n)+ f(m, n-1) +f(m-1 ,n-1)$ for $m>1$ and $n>1$. Also let $$ S(n)= \sum_{a+b=n} f(a,b) \,\,\;\; a\geq 1 \,\, \text{and} \,\; b\geq 1.$$ Prove that $$S(n+2) =S(n) +2S(n+1) \,\, \; \text{for} \, \, n \geq 2.$$

2024 CIIM, 1

Let $(a_n)_{n \geq 1}$ be a sequence of real numbers. We define a sequence of real functions $(f_n)_{n \geq 0}$ such that for all $x \in \mathbb{R}$, the following holds: \[ f_0(x) = 1 \quad \text{and} \quad f_n(x) = \int_{a_n}^{x} f_{n-1}(t) \, dt \quad \text{for } n \geq 1. \] Find all possible sequences $(a_n)_{n \geq 1}$ such that $f_n(0) = 0$ for all $n \geq 2$.\\ [b]Note:[/b] It is not necessarily true that $f_1(0) = 0$.

1985 IMO Shortlist, 12

A sequence of polynomials $P_m(x, y, z), m = 0, 1, 2, \cdots$, in $x, y$, and $z$ is defined by $P_0(x, y, z) = 1$ and by \[P_m(x, y, z) = (x + z)(y + z)P_{m-1}(x, y, z + 1) - z^2P_{m-1}(x, y, z)\] for $m > 0$. Prove that each $P_m(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of $x, y, z.$

2011 Indonesia TST, 4

Let $a, b$, and $c$ be positive integers such that $gcd(a, b) = 1$. Sequence $\{u_k\}$, is given such that $u_0 = 0$, $u_1 = 1$, and u$_{k+2} = au_{k+1} + bu_k$ for all $k \ge 0$. Let $m$ be the least positive integer such that $c | u_m$ and $n$ be an arbitrary positive integer such that $c | u_n$. Show that $m | n$. [hide=PS.] There was a typo in the last line, as it didn't define what n does. Wording comes from [b]tst-2011-1.pdf[/b] from [url=https://sites.google.com/site/imoidn/idntst/2011tst]here[/url]. Correction was made according to #2[/hide]

1994 IMO Shortlist, 6

Define the sequence $ a_1, a_2, a_3, ...$ as follows. $ a_1$ and $ a_2$ are coprime positive integers and $ a_{n \plus{} 2} \equal{} a_{n \plus{} 1}a_n \plus{} 1$. Show that for every $ m > 1$ there is an $ n > m$ such that $ a_m^m$ divides $ a_n^n$. Is it true that $ a_1$ must divide $ a_n^n$ for some $ n > 1$?

2018 Thailand TSTST, 4

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

1991 Tournament Of Towns, (307) 4

A sequence $a_n$ is determined by the rules $a_0 = 9$ and for any nonnegative $k$, $$a_{k+1}=3a_k^4+4a_k^3.$$ Prove that $a_{10}$ contains more than $1000$ nines in decimal notation. (Yao)

1984 IMO Shortlist, 6

Let $c$ be a positive integer. The sequence $\{f_n\}$ is defined as follows: \[f_1 = 1, f_2 = c, f_{n+1} = 2f_n - f_{n-1} + 2 \quad (n \geq 2).\] Show that for each $k \in \mathbb N$ there exists $r \in \mathbb N$ such that $f_kf_{k+1}= f_r.$

2018 Saudi Arabia GMO TST, 1

Let $\{x_n\}$ be a sequence defined by $x_1 = 2$ and $x_{n+1} = x_n^2 - x_n + 1$ for $n \ge 1$. Prove that $$1 -\frac{1}{2^{2^{n-1}}} < \frac{1}{x_1}+\frac{1}{x_2}+ ... +\frac{1}{x_n}< 1 -\frac{1}{2^{2^n}}$$ for all $n$

1992 Poland - Second Round, 6

The sequences $(x_n)$ and $(y_n)$ are defined as follows: $$ x_{n+1} = \frac{x_n+2}{x_n+1},\quad y_{n+1}=\frac{y_n^2+2}{2y_n} \quad \text{ for } n= 0,1,2,\ldots.$$ Prove that for every integer $ n\geq 0 $ the equality $ y_n = x_{2^n-1} $ holds.

2015 CHMMC (Fall), 2

Let $a_1 = 1$, $a_2 = 1$, and for $n \ge 2$, let $$a_{n+1} =\frac{1}{n} a_n + a_{n-1}.$$ What is $a_{12}$?

2016 Brazil Undergrad MO, 3

Let it \(k \geq 1\) be an integer. Define the sequence \((a_n)_{n \geq 1}\) by \(a_0=0,a_1=1\) and \[ a_{n+2} = ka_{n+1}+a_n \] for \(n \geq 0\). Let it \(p\) an odd prime number. Denote \(m(p)\) as the smallest positive integer \(m\) such that \(p | a_m\). Denote \(T(p)\) as the smallest positive integer \(T\) such that for every natural \(j\) we gave \(p | (a_{T+j}-a_j)\). [list='i'] [*] Show that \(T(p) \leq (p-1) \cdot m(p)\). [*] Show that if \(T(p) = (p-1) \cdot m(p)\) then \[ \prod_{1 \leq j \leq T(p)-1}^{j \not \equiv 0 \pmod{m(p)}}{a_j} \equiv (-1)^{m(p)-1} \pmod{p} \] [/list]

2016 Saudi Arabia IMO TST, 1

Define the sequence $a_1, a_2,...$ as follows: $a_1 = 1$, and for every $n \ge 2$, $a_n = n - 2$ if $a_{n-1} = 0$ and $a_n = a_{n-1} - 1$, otherwise. Find the number of $1 \le k \le 2016$ such that there are non-negative integers $r, s$ and a positive integer $n$ satisfying $k = r + s$ and $a_{n+r} = a_n + s$.

2010 Korea Junior Math Olympiad, 4

Let there be a sequence $a_n$ such that $a_1 = 2,a_2 = 0, a_3 = 1, a_4 = 0$, and for $n \ge 1, a_{n+4}$ is the remainder when $a_n + 2a_{n+1} + 3a_{n+2} + 4a_{n+3}$ is divided by $9$. Prove that there are no positive integer $k$ such that $$a_k = 0, a_{k+1} = 1, a_{k+2} = 0,a_{k+3} = 2.$$

2000 Regional Competition For Advanced Students, 4

We consider the sequence $\{u_n\}$ defined by recursion $u_{n+1} =\frac{u_n(u_n + 1)}{n}$ for $n \ge 1$. (a) Determine the terms of the sequence for $u_1 = 1$. (b) Show that if a member of the sequence is rational, then all subsequent members are also rational numbers. (c) Show that for every natural number $K$ there is a $u_1 > 1$ such that the first $K$ terms of the sequence are natural numbers.

2019 Saudi Arabia Pre-TST + Training Tests, 3.3

Define sequence of positive integers $(a_n)$ as $a_1 = a$ and $a_{n+1} = a^2_n + 1$ for $n \ge 1$. Prove that there is no index $n$ for which $$\prod_{k=1}^{n} \left(a^2_k + a_k + 1\right)$$ is a perfect square.

1991 All Soviet Union Mathematical Olympiad, 551

A sequence of positive integers is constructed as follows. If the last digit of $a_n$ is greater than $5$, then $a_{n+1}$ is $9a_n$. If the last digit of $a_n$ is $5$ or less and an has more than one digit, then $a_{n+1}$ is obtained from $a_n$ by deleting the last digit. If $a_n$ has only one digit, which is $5$ or less, then the sequence terminates. Can we choose the first member of the sequence so that it does not terminate?

1990 Bundeswettbewerb Mathematik, 2

The sequence $a_0,a_1,a_2,...$ is defined by $a_0 = 0, a_1 = a_2 = 1$ and $a_{n+2} +a_{n-1} = 2(a_{n+1} +a_n)$ for all $n \in N$. Show that all $a_n$ are perfect squares .

2015 Thailand Mathematical Olympiad, 1

Let $p$ be a prime, and let $a_1, a_2, a_3, . . .$ be a sequence of positive integers so that $a_na_{n+2} = a^2_{n+1} + p$ for all positive integers $n$. Show that $a_{n+1}$ divides $a_n + a_{n+2}$ for all positive integers $n$.

2019 Ecuador Juniors, 6

Let $x_0, a, b$ be reals given such that $b > 0$ and $x_0 \ne 0$. For every nonnegative integer $n$ a real value $x_{n+1}$ is chosen that satisfies $$x^2_{n+1}= ax_nx_{n+1} + bx^2_n .$$ a) Find how many different values $x_n$ can take. b) Find the sum of all possible values of $x_n$ with repetitions as a function of $n, x_0, a, b$.

1976 IMO Shortlist, 4

A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where [x] denotes the smallest integer $\leq$ x)$.$

1996 IMO Shortlist, 9

Let the sequence $ a(n), n \equal{} 1,2,3, \ldots$ be generated as follows with $ a(1) \equal{} 0,$ and for $ n > 1:$ \[ a(n) \equal{} a\left( \left \lfloor \frac{n}{2} \right \rfloor \right) \plus{} (\minus{}1)^{\frac{n(n\plus{}1)}{2}}.\] 1.) Determine the maximum and minimum value of $ a(n)$ over $ n \leq 1996$ and find all $ n \leq 1996$ for which these extreme values are attained. 2.) How many terms $ a(n), n \leq 1996,$ are equal to 0?

2008 VJIMC, Problem 2

Find all functions $f:(0,\infty)\to(0,\infty)$ such that $$f(f(f(x)))+4f(f(x))+f(x)=6x.$$

1987 IMO Shortlist, 14

How many words with $n$ digits can be formed from the alphabet $\{0, 1, 2, 3, 4\}$, if neighboring digits must differ by exactly one? [i]Proposed by Germany, FR.[/i]

2001 Mongolian Mathematical Olympiad, Problem 1

Suppose that a sequence $x_1,x_2,\ldots,x_{2001}$ of positive real numbers satisfies $$3x^2_{n+1}=7x_nx_{n+1}-3x_{n+1}-2x^2_n+x_n\enspace\text{ and }\enspace x_{37}=x_{2001}.$$Find the maximum possible value of $x_1$.