Found problems: 1001
2022 Macedonian Mathematical Olympiad, Problem 2
Let $ABCD$ be cyclic quadrilateral and $E$ the midpoint of $AC$. The circumcircle of $\triangle CDE$ intersect the side $BC$ at $F$, which is different from $C$. If $B'$ is the reflection of $B$ across $F$, prove that $EF$ is tangent to the circumcircle of $\triangle B'DF$.
[i]Proposed by Nikola Velov[/i]
2014 Tajikistan Team Selection Test, 2
Let $M$be an interior point of triangle $ABC$. Let the line $AM$ intersect the circumcircle of the triangle $MBC$ for the second time at point $D$, the line $BM$ intersect the circumcircle of the triangle $MCA$ for the second time at point $E$, and the line $CM$ intersect the circumcircle of the triangle $MAB$ for the second time at point $F$. Prove that $\frac{AD}{MD} + \frac{BE}{ME} + \frac{CF}{MF} \geq \frac{9}{2}$.
[i]Proposed by Nairy Sedrakyan[/i]
2005 District Olympiad, 2
Let $ABC$ be a triangle and let $M$ be the midpoint of the side $AB$. Let $BD$ be the interior angle bisector of $\angle ABC$, $D\in AC$. Prove that if $MD \perp BD$ then $AB=3BC$.
2011 Poland - Second Round, 2
The convex quadrilateral $ABCD$ is given, $AB<BC$ and $AD<CD$. $P,Q$ are points on $BC$ and $CD$ respectively such that $PB=AB$ and $QD=AD$. $M$ is midpoint of $PQ$. We assume that $\angle BMD=90^{\circ}$, prove that $ABCD$ is cyclic.
2009 Pan African, 2
Point $P$ lies inside a triangle $ABC$. Let $D,E$ and $F$ be reflections of the point $P$ in the lines $BC,CA$ and $AB$, respectively. Prove that if the triangle $DEF$ is equilateral, then the lines $AD,BE$ and $CF$ intersect in a common point.
Russian TST 2019, P2
Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.
2010 IMO Shortlist, 1
Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$
[i]Proposed by Christopher Bradley, United Kingdom[/i]
2008 USAMO, 3
Let $n$ be a positive integer. Denote by $S_n$ the set of points $(x, y)$ with integer coordinates such that \[ \left\lvert x\right\rvert + \left\lvert y + \frac{1}{2} \right\rvert < n. \] A path is a sequence of distinct points $(x_1 , y_1), (x_2, y_2), \ldots, (x_\ell, y_\ell)$ in $S_n$ such that, for $i = 2, \ldots, \ell$, the distance between $(x_i , y_i)$ and $(x_{i-1} , y_{i-1} )$ is $1$ (in other words, the points $(x_i, y_i)$ and $(x_{i-1} , y_{i-1} )$ are neighbors in the lattice of points with integer coordinates). Prove that the points in $S_n$ cannot be partitioned into fewer than $n$ paths (a partition of $S_n$ into $m$ paths is a set $\mathcal{P}$ of $m$ nonempty paths such that each point in $S_n$ appears in exactly one of the $m$ paths in $\mathcal{P}$).
2017 EGMO, 6
Let $ABC$ be an acute-angled triangle in which no two sides have the same length. The reflections of the centroid $G$ and the circumcentre $O$ of $ABC$ in its sides $BC,CA,AB$ are denoted by $G_1,G_2,G_3$ and $O_1,O_2,O_3$, respectively. Show that the circumcircles of triangles $G_1G_2C$, $G_1G_3B$, $G_2G_3A$, $O_1O_2C$, $O_1O_3B$, $O_2O_3A$ and $ABC$ have a common point.
[i]The centroid of a triangle is the intersection point of the three medians. A median is a line connecting a vertex of the triangle to the midpoint of the opposite side.[/i]
2011 Junior Balkan Team Selection Tests - Romania, 2
Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$
[i]Proposed by Sergei Berlov, Russia [/i]
2011 Brazil Team Selection Test, 3
Let $ABC$ be an acute triangle with $\angle BAC=30^{\circ}$. The internal and external angle bisectors of $\angle ABC$ meet the line $AC$ at $B_1$ and $B_2$, respectively, and the internal and external angle bisectors of $\angle ACB$ meet the line $AB$ at $C_1$ and $C_2$, respectively. Suppose that the circles with diameters $B_1B_2$ and $C_1C_2$ meet inside the triangle $ABC$ at point $P$. Prove that $\angle BPC=90^{\circ}$ .
2000 All-Russian Olympiad, 7
A quadrilateral $ABCD$ is circumscribed about a circle $\omega$. The lines $AB$ and $CD$ meet at $O$. A circle $\omega_1$ is tangent to side $BC$ at $K$ and to the extensions of sides $AB$ and $CD$, and a circle $\omega_2$ is tangent to side $AD$ at $L$ and to the extensions of sides $AB$ and $CD$. Suppose that points $O$, $K$, $L$ lie on a line. Prove that the midpoints of $BC$ and $AD$ and the center of $\omega$ also lie on a line.
2011 JBMO Shortlist, 8
Determine the polygons with $n$ sides $(n \ge 4)$, not necessarily convex, which satisfy the property that the reflection of every vertex of polygon with respect to every diagonal of the polygon does not fall outside the polygon.
[b]Note:[/b] Each segment joining two non-neighboring vertices of the polygon is a diagonal. The reflection is considered with respect to the support line of the diagonal.
1999 Tuymaada Olympiad, 1
In the triangle $ABC$ we have $\angle ABC=100^\circ$, $\angle ACB=65^\circ$, $M\in AB$, $N\in AC$, and $\angle MCB=55^\circ$, $\angle NBC=80^\circ$. Find $\angle NMC$.
[i]St.Petersburg folklore[/i]
1989 Canada National Olympiad, 2
Let $ ABC$ be a right angled triangle of area 1. Let $ A'B'C'$ be the points obtained by reflecting $ A,B,C$ respectively, in their opposite sides. Find the area of $ \triangle A'B'C'.$
2010 Czech-Polish-Slovak Match, 3
Let $ABCD$ be a convex quadrilateral for which \[ AB+CD=\sqrt{2}\cdot AC\qquad\text{and}\qquad BC+DA=\sqrt{2}\cdot BD.\] Prove that $ABCD$ is a parallelogram.
2003 Tournament Of Towns, 6
A trapezoid with bases $AD$ and $BC$ is circumscribed about a circle, $E$ is the intersection point of the diagonals. Prove that $\angle AED$ is not acute.
2000 Iran MO (3rd Round), 1
Two circles intersect at two points $A$ and $B$. A line $\ell$ which passes through the point $A$ meets the two circles again at the points $C$ and $D$, respectively. Let $M$ and $N$ be the midpoints of the arcs $BC$ and $BD$ (which do not contain the point $A$) on the respective circles. Let $K$ be the midpoint of the segment $CD$. Prove that $\measuredangle MKN = 90^{\circ}$.
2000 Brazil National Olympiad, 1
A rectangular piece of paper has top edge $AD$. A line $L$ from $A$ to the bottom edge makes an angle $x$ with the line $AD$. We want to trisect $x$. We take $B$ and $C$ on the vertical ege through $A$ such that $AB = BC$. We then fold the paper so that $C$ goes to a point $C'$ on the line $L$ and $A$ goes to a point $A'$ on the horizontal line through $B$. The fold takes $B$ to $B'$. Show that $AA'$ and $AB'$ are the required trisectors.
2011 Preliminary Round - Switzerland, 5
Let $ABCD$ an inscribed quadrilateral and $r$ and $s$ the reflections of the straight line through $A$ and $B$ over the inner angle bisectors of angles $\angle{CAD}$ and $\angle{CBD}$, respectively. Let $P$ the point of intersection of $r$ and $s$ and let $O$ the circumcentre of $ABCD$. Prove that $OP \perp CD$.
2003 Baltic Way, 14
Equilateral triangles $AMB,BNC,CKA$ are constructed on the exterior of a triangle $ABC$. The perpendiculars from the midpoints of $MN, NK, KM$ to the respective lines $CA, AB, BC$ are constructed. Prove that these three perpendiculars pass through a single point.
2014 Vietnam National Olympiad, 4
Let $ABC$ be an acute triangle, $(O)$ be the circumcircle, and $AB<AC.$ Let $I$ be the midpoint of arc $BC$ (not containing $A$). $K$ lies on $AC,$ $K\ne C$ such that $IK=IC.$ $BK$ intersects $(O)$ at the second point $D,$ $D\ne B$ and intersects $AI$ at $E.$ $DI$ intersects $AC$ at $F.$
a) Prove that $EF=\frac{BC}{2}.$
b) $M$ lies on $DI$ such that $CM$ is parallel to $AD.$ $KM$ intersects $BC$ at $N.$ The circumcircle of triangle $BKN$ intersects $(O)$ at the second point $P.$ Prove that $PK$ passes through the midpoint of segment $AD.$
1988 AIME Problems, 14
Let $C$ be the graph of $xy = 1$, and denote by $C^*$ the reflection of $C$ in the line $y = 2x$. Let the equation of $C^*$ be written in the form
\[ 12x^2 + bxy + cy^2 + d = 0. \]
Find the product $bc$.
1987 IMO Longlists, 57
The bisectors of the angles $B,C$ of a triangle $ABC$ intersect the opposite sides in $B', C'$ respectively. Prove that the straight line $B'C'$ intersects the inscribed circle in two different points.
2013 China Team Selection Test, 1
The quadrilateral $ABCD$ is inscribed in circle $\omega$. $F$ is the intersection point of $AC$ and $BD$. $BA$ and $CD$ meet at $E$. Let the projection of $F$ on $AB$ and $CD$ be $G$ and $H$, respectively. Let $M$ and $N$ be the midpoints of $BC$ and $EF$, respectively. If the circumcircle of $\triangle MNG$ only meets segment $BF$ at $P$, and the circumcircle of $\triangle MNH$ only meets segment $CF$ at $Q$, prove that $PQ$ is parallel to $BC$.