This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1937 Moscow Mathematical Olympiad, 036

* Given a regular dodecahedron. Find how many ways are there to draw a plane through it so that its section of the dodecahedron is a regular hexagon?

1935 Moscow Mathematical Olympiad, 009

The height of a truncated cone is equal to the radius of its base. The perimeter of a regular hexagon circumscribing its top is equal to the perimeter of an equilateral triangle inscribed in its base. Find the angle $\phi$ between the cone’s generating line and its base.