This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2000 AIME Problems, 10

A sequence of numbers $x_{1},x_{2},x_{3},\ldots,x_{100}$ has the property that, for every integer $k$ between $1$ and $100,$ inclusive, the number $x_{k}$ is $k$ less than the sum of the other $99$ numbers. Given that $x_{50}=m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

2012 Purple Comet Problems, 16

Let $a$, $b$, and $c$ be non-zero real number such that $\tfrac{ab}{a+b}=3$, $\tfrac{bc}{b+c}=4$, and $\tfrac{ca}{c+a}=5$. There are relatively prime positive integers $m$ and $n$ so that $\tfrac{abc}{ab+bc+ca}=\tfrac{m}{n}$. Find $m+n$.

1996 AIME Problems, 12

For each permutation $ a_1, a_2, a_3, \ldots,a_{10}$ of the integers $ 1,2,3,\ldots,10,$ form the sum \[ |a_1 \minus{} a_2| \plus{} |a_3 \minus{} a_4| \plus{} |a_5 \minus{} a_6| \plus{} |a_7 \minus{} a_8| \plus{} |a_9 \minus{} a_{10}|.\] The average value of all such sums can be written in the form $ p/q,$ where $ p$ and $ q$ are relatively prime positive integers. Find $ p \plus{} q.$

2002 AMC 10, 16

For how many integers $ n$ is $ \frac{n}{20\minus{}n}$ the square of an integer? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 10$

2010 Princeton University Math Competition, 2

PUMaCDonalds, a newly-opened fast food restaurant, has 5 menu items. If the first 4 customers each choose one menu item at random, the probability that the 4th customer orders a previously unordered item is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2004 AIME Problems, 10

Let $S$ be the set of integers between $1$ and $2^{40}$ whose binary expansions have exactly two $1$'s. If a number is chosen at random from $S$, the probability that it is divisible by $9$ is $p/q$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

2013 India IMO Training Camp, 3

We define an operation $\oplus$ on the set $\{0, 1\}$ by \[ 0 \oplus 0 = 0 \,, 0 \oplus 1 = 1 \,, 1 \oplus 0 = 1 \,, 1 \oplus 1 = 0 \,.\] For two natural numbers $a$ and $b$, which are written in base $2$ as $a = (a_1a_2 \ldots a_k)_2$ and $b = (b_1b_2 \ldots b_k)_2$ (possibly with leading 0's), we define $a \oplus b = c$ where $c$ written in base $2$ is $(c_1c_2 \ldots c_k)_2$ with $c_i = a_i \oplus b_i$, for $1 \le i \le k$. For example, we have $7 \oplus 3 = 4$ since $ 7 = (111)_2$ and $3 = (011)_2$. For a natural number $n$, let $f(n) = n \oplus \left[ n/2 \right]$, where $\left[ x \right]$ denotes the largest integer less than or equal to $x$. Prove that $f$ is a bijection on the set of natural numbers.

1988 IMO Longlists, 63

Let $ p$ be the product of two consecutive integers greater than 2. Show that there are no integers $ x_1, x_2, \ldots, x_p$ satisfying the equation \[ \sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1 \] [b]OR[/b] Show that there are only two values of $ p$ for which there are integers $ x_1, x_2, \ldots, x_p$ satisfying \[ \sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1 \]

2018 China Northern MO, 5

A right triangle has the property that it's sides are pairwise relatively prime positive integers and that the ratio of it's area to it's perimeter is a perfect square. Find the minimum possible area of this triangle.

2001 AIME Problems, 12

Given a triangle, its midpoint triangle is obtained by joining the midpoints of its sides. A sequence of polyhedra $P_{i}$ is defined recursively as follows: $P_{0}$ is a regular tetrahedron whose volume is 1. To obtain $P_{i+1}$, replace the midpoint triangle of every face of $P_{i}$ by an outward-pointing regular tetrahedron that has the midpoint triangle as a face. The volume of $P_{3}$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2002 AMC 12/AHSME, 12

For how many integers $ n$ is $ \frac{n}{20\minus{}n}$ the square of an integer? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 10$

2011 Croatia Team Selection Test, 4

Find all pairs of integers $x,y$ for which \[x^3+x^2+x=y^2+y.\]

1995 India National Olympiad, 2

Show that there are infintely many pairs $(a,b)$ of relatively prime integers (not necessarily positive) such that both the equations \begin{eqnarray*} x^2 +ax +b &=& 0 \\ x^2 + 2ax + b &=& 0 \\ \end{eqnarray*} have integer roots.

1979 IMO Longlists, 25

If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.

2009 Albania Team Selection Test, 4

Find all the natural numbers $m,n$ such that $1+5 \cdot 2^m=n^2$.

2004 AIME Problems, 8

Define a regular $n$-pointed star to be the union of $n$ line segments $P_1P_2, P_2P_3,\ldots, P_nP_1$ such that $\bullet$ the points $P_1, P_2,\ldots, P_n$ are coplanar and no three of them are collinear, $\bullet$ each of the $n$ line segments intersects at least one of the other line segments at a point other than an endpoint, $\bullet$ all of the angles at $P_1, P_2,\ldots, P_n$ are congruent, $\bullet$ all of the $n$ line segments $P_2P_3,\ldots, P_nP_1$ are congruent, and $\bullet$ the path $P_1P_2, P_2P_3,\ldots, P_nP_1$ turns counterclockwise at an angle of less than 180 degrees at each vertex. There are no regular 3-pointed, 4-pointed, or 6-pointed stars. All regular 5-pointed stars are similar, but there are two non-similar regular 7-pointed stars. How many non-similar regular 1000-pointed stars are there?

2010 Indonesia TST, 1

find all pairs of relatively prime natural numbers $ (m,n) $ in such a way that there exists non constant polynomial f satisfying \[ gcd(a+b+1, mf(a)+nf(b) > 1 \] for every natural numbers $ a $ and $ b $

2008 Romania Team Selection Test, 1

Let $ n$ be an integer, $ n\geq 2$. Find all sets $ A$ with $ n$ integer elements such that the sum of any nonempty subset of $ A$ is not divisible by $ n\plus{}1$.

2008 Korea - Final Round, 2

Find all integer polynomials $f$ such that there are infinitely many pairs of relatively prime natural numbers $(a,b)$ so that $a+b \mid f(a)+f(b)$.

2014 NIMO Problems, 4

Let $S$ be the set of integers which are both a multiple of $70$ and a factor of $630{,}000$. A random element $c$ of $S$ is selected. If the probability that there exists an integer $d$ with $\gcd (c,d) = 70$ and $\operatorname{lcm} (c,d) = 630{,}000$ is $\frac mn$ for some relatively prime integers $m$ and $n$, compute $100m+n$. [i]Proposed by Eugene Chen[/i]

2013 Online Math Open Problems, 34

For positive integers $n$, let $s(n)$ denote the sum of the squares of the positive integers less than or equal to $n$ that are relatively prime to $n$. Find the greatest integer less than or equal to \[ \sum_{n\mid 2013} \frac{s(n)}{n^2}, \] where the summation runs over all positive integers $n$ dividing $2013$. [i]Ray Li[/i]

Oliforum Contest IV 2013, 7

For every positive integer $n$, define the number of non-empty subsets $\mathcal N\subseteq \{1,\ldots ,n\}$ such that $\gcd(n\in\mathcal N)=1$. Show that $f(n)$ is a perfect square if and only if $n=1$.

2010 AIME Problems, 1

Maya lists all the positive divisors of $ 2010^2$. She then randomly selects two distinct divisors from this list. Let $ p$ be the probability that exactly one of the selected divisors is a perfect square. The probability $ p$ can be expressed in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

2013 Online Math Open Problems, 47

Let $f(x,y)$ be a function from ordered pairs of positive integers to real numbers such that \[ f(1,x) = f(x,1) = \frac{1}{x} \quad\text{and}\quad f(x+1,y+1)f(x,y)-f(x,y+1)f(x+1,y) = 1 \] for all ordered pairs of positive integers $(x,y)$. If $f(100,100) = \frac{m}{n}$ for two relatively prime positive integers $m,n$, compute $m+n$. [i]David Yang[/i]

2004 India IMO Training Camp, 3

Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds $v_1$ and $v_2$ respectively, where $v_1$ and $v_2$ are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that (a) at any given time $t$, at least one of the runners is at a distance not more than $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units from the starting point. (b) there is a time $t$ such that both the runners are at least $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units away from the starting point. (All disstances are measured along the track). $[x]$ is the greatest integer function.