Found problems: 698
1999 AIME Problems, 14
Point $P$ is located inside traingle $ABC$ so that angles $PAB, PBC,$ and $PCA$ are all congruent. The sides of the triangle have lengths $AB=13, BC=14,$ and $CA=15,$ and the tangent of angle $PAB$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
PEN P Problems, 19
Let $n$ be an integer of the form $a^2 + b^2$, where $a$ and $b$ are relatively prime integers and such that if $p$ is a prime, $p \leq \sqrt{n}$, then $p$ divides $ab$. Determine all such $n$.
2014 Polish MO Finals, 1
Let $k,n\ge 1$ be relatively prime integers. All positive integers not greater than $k+n$ are written in some order on the blackboard. We can swap two numbers that differ by $k$ or $n$ as many times as we want. Prove that it is possible to obtain the order $1,2,\dots,k+n-1, k+n$.
2008 ITest, 52
A triangle has sides of length $48$, $55$, and $73$. A square is inscribed in the triangle such that one side of the square lies on the longest side of the triangle, and the two vertices not on that side of the square touch the other two sides of the triangle. If $c$ and $d$ are relatively prime positive integers such that $c/d$ is the length of a side of the square, find the value of $c+d$.
1985 IMO Longlists, 1
Each of the numbers in the set $N = \{1, 2, 3, \cdots, n - 1\}$, where $n \geq 3$, is colored with one of two colors, say red or black, so that:
[i](i)[/i] $i$ and $n - i$ always receive the same color, and
[i](ii)[/i] for some $j \in N$, relatively prime to $n$, $i$ and $|j - i|$ receive the same color for all $i \in N, i \neq j.$
Prove that all numbers in $N$ must receive the same color.
1963 All Russian Mathematical Olympiad, 030
Natural numbers $a$ and $b$ are relatively prime. Prove that the greatest common divisor of $(a+b)$ and $(a^2+b^2)$ is either $1$ or $2$.
2010 Iran MO (3rd Round), 2
[b]rolling cube[/b]
$a$,$b$ and $c$ are natural numbers. we have a $(2a+1)\times (2b+1)\times (2c+1)$ cube. this cube is on an infinite plane with unit squares. you call roll the cube to every side you want. faces of the cube are divided to unit squares and the square in the middle of each face is coloured (it means that if this square goes on a square of the plane, then that square will be coloured.)
prove that if any two of lengths of sides of the cube are relatively prime, then we can colour every square in plane.
time allowed for this question was 1 hour.
1997 AIME Problems, 2
The nine horizontal and nine vertical lines on an $8\times8$ checkerboard form $r$ rectangles, of which $s$ are squares. The number $s/r$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2014 NIMO Problems, 11
Consider real numbers $A$, $B$, \dots, $Z$ such that \[
EVIL = \frac{5}{31}, \;
LOVE = \frac{6}{29}, \text{ and }
IMO = \frac{7}{3}.
\] If $OMO = \tfrac mn$ for relatively prime positive integers $m$ and $n$, find the value of $m+n$.
[i]Proposed by Evan Chen[/i]
2014 ELMO Shortlist, 4
Let $r$ and $b$ be positive integers. The game of [i]Monis[/i], a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every $r$ years, while a blue block falls exactly once every $b$ years.
(a) Suppose that $r$ and $b$ are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $rb$ years in which the column is initially empty. Determine, in terms of $r$ and $b$, the number of blocks in the column at the end.
(b) Now suppose $r$ and $b$ are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t = r, 2r, \dots, (b-1)r$ years, while a blue block falls at times $t = b, 2b, \dots, (r-1)b$ years. Prove that at time $t=rb$, the number of blocks in the column is $\left\lvert 1+2(r-1)(b+r)-8S \right\rvert$, where \[ S = \left\lfloor \frac{2r}{r+b} \right\rfloor
+ \left\lfloor \frac{4r}{r+b} \right\rfloor
+ ...
+ \left\lfloor \frac{(r+b-1)r}{r+b} \right\rfloor
. \]
[i]Proposed by Sammy Luo[/i]
2010 Contests, 1
Maya lists all the positive divisors of $ 2010^2$. She then randomly selects two distinct divisors from this list. Let $ p$ be the probability that exactly one of the selected divisors is a perfect square. The probability $ p$ can be expressed in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.
2012 Czech-Polish-Slovak Match, 1
Given a positive integer $n$, let $\tau(n)$ denote the number of positive divisors of $n$ and $\varphi(n)$ denote the number of positive integers not exceeding $n$ that are relatively prime to $n$. Find all $n$ for which one of the three numbers $n,\tau(n), \varphi(n)$ is the arithmetic mean of the other two.
2003 Tournament Of Towns, 1
An increasing arithmetic progression consists of one hundred positive integers. Is it possible that every two of them are relatively prime?
2000 Brazil Team Selection Test, Problem 4
[b]Problem:[/b]For a positive integer $ n$,let $ V(n; b)$ be the number of decompositions of $ n$ into a
product of one or more positive integers greater than $ b$. For example,$ 36 \equal{} 6.6 \equal{}4.9 \equal{} 3.12 \equal{} 3 .3. 4$, so that $ V(36; 2) \equal{} 5$.Prove that for all positive integers $ n$; b it holds that $ V(n;b)<\frac{n}{b}$. :)
2009 Purple Comet Problems, 20
Five men and seven women stand in a line in random order. Let m and n be relatively prime positive integers so that $\tfrac{m}{n}$ is the probability that each man stands next to at least one woman. Find $m + n.$
2002 Bosnia Herzegovina Team Selection Test, 3
If $n$ is a natural number, prove that the number $(n+1)(n+2)\cdots(n+10)$ is not a perfect square.
2008 ITest, 12
One day while the Kubik family attends one of Michael's baseball games, Tony gets bored and walks to the creek a few yards behind the baseball field. One of Tony's classmates Mitchell sees Tony and goes to join him. While playing around the creek, the two boys find an ordinary six-sided die buried in sediment. Mitchell washes it off in the water and challenges Tony to a contest. Each of the boys rolls the die exactly once. Mitchell's roll is $3$ higher than Tony's. "Let's play once more," says Tony. Let $a/b$ be the probability that the difference between the outcomes of the two dice is again exactly $3$ (regardless of which of the boys rolls higher), where $a$ and $b$ are relatively prime positive integers. Find $a+b$.
1993 USAMO, 4
Let $\, a,b \,$ be odd positive integers. Define the sequence $\, (f_n ) \,$ by putting $\, f_1 = a,$ $f_2 = b, \,$ and by letting $\, f_n \,$ for $\, n \geq 3 \,$ be the greatest odd divisor of $\, f_{n-1} + f_{n-2}$. Show that $\, f_n \,$ is constant for $\, n \,$ sufficiently large and determine the eventual value as a function of $\, a \,$ and $\, b$.
2015 Hanoi Open Mathematics Competitions, 13
Let $m$ be given odd number, and let $a, b$ denote the roots of equation $x^2 + mx - 1 = 0$ and $c = a^{2014} + b^{2014}$ , $d =a^{2015} + b^{2015}$ . Prove that $c$ and $d$ are relatively prime numbers.
2010 Purple Comet Problems, 25
Let $x_1$, $x_2$, and $x_3$ be the roots of the polynomial $x^3+3x+1$. There are relatively prime positive integers $m$ and $n$ such that $\tfrac{m}{n}=\tfrac{x_1^2}{(5x_2+1)(5x_3+1)}+\tfrac{x_2^2}{(5x_1+1)(5x_3+1)}+\tfrac{x_3^2}{(5x_1+1)(5x_2+1)}$. Find $m+n$.
2009 APMO, 5
Larry and Rob are two robots travelling in one car from Argovia to Zillis. Both robots have control over the steering and steer according to the following algorithm: Larry makes a 90 degrees left turn after every $ \ell$ kilometer driving from start, Rob makes a 90 degrees right turn after every $ r$ kilometer driving from start, where $ \ell$ and $ r$ are relatively prime positive integers.
In the event of both turns occurring simultaneously, the car will keep going without changing direction. Assume that the ground is flat and the car can move in any direction. Let the car start from Argovia facing towards Zillis. For which choices of the pair ($ \ell$, $ r$) is the car guaranteed to reach Zillis, regardless of how far it is from Argovia?
2008 Argentina Iberoamerican TST, 2
Set $S = \{1, 2, 3, ..., 2005\}$. If among any $n$ pairwise coprime numbers in $S$ there exists at least a prime number, find the minimum of $n$.
1997 IMO Shortlist, 6
(a) Let $ n$ be a positive integer. Prove that there exist distinct positive integers $ x, y, z$ such that
\[ x^{n\minus{}1} \plus{} y^n \equal{} z^{n\plus{}1}.\]
(b) Let $ a, b, c$ be positive integers such that $ a$ and $ b$ are relatively prime and $ c$ is relatively prime either to $ a$ or to $ b.$ Prove that there exist infinitely many triples $ (x, y, z)$ of distinct positive integers $ x, y, z$ such that
\[ x^a \plus{} y^b \equal{} z^c.\]
2004 APMO, 4
For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that
\[ \left\lfloor{(n-1)!\over n(n+1)}\right\rfloor \]
is even for every positive integer $n$.
2008 AIME Problems, 9
Ten identical crates each of dimensions $ 3$ ft $ \times$ $ 4$ ft $ \times$ $ 6$ ft. The first crate is placed flat on the floor. Each of the remaining nine crates is placed, in turn, flat on top of the previous crate, and the orientation of each crate is chosen at random. Let $ \frac{m}{n}$ be the probability that the stack of crates is exactly $ 41$ ft tall, where $ m$ and $ n$ are relatively prime positive integers. Find $ m$.