Found problems: 698
2012 ELMO Shortlist, 2
For positive rational $x$, if $x$ is written in the form $p/q$ with $p, q$ positive relatively prime integers, define $f(x)=p+q$. For example, $f(1)=2$.
a) Prove that if $f(x)=f(mx/n)$ for rational $x$ and positive integers $m, n$, then $f(x)$ divides $|m-n|$.
b) Let $n$ be a positive integer. If all $x$ which satisfy $f(x)=f(2^nx)$ also satisfy $f(x)=2^n-1$, find all possible values of $n$.
[i]Anderson Wang.[/i]
2014 NIMO Problems, 4
A black bishop and a white king are placed randomly on a $2000 \times 2000$ chessboard (in distinct squares). Let $p$ be the probability that the bishop attacks the king (that is, the bishop and king lie on some common diagonal of the board). Then $p$ can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m$.
[i]Proposed by Ahaan Rungta[/i]
2005 Purple Comet Problems, 20
The summation $\sum_{k=1}^{360} \frac{1}{k \sqrt{k+1} + (k+1)\sqrt{k}}$ is the ratio of two relatively prime positive integers $m$ and $n$. Find $m + n$.
PEN O Problems, 13
Let $n$ and $k$ be given relatively prime natural numbers, $k<n.$ Each number in the set $M=\{1,2,...,n-1\}$ is colored either blue or white. It is given that [list] [*] for each $i\in M,$ both $i$ and $n-i$ have the same color, [*] for each $i\in M,i\ne k,$ both $i$ and $\left \vert i-k \right \vert $ have the same color. [/list] Prove that all numbers in $M$ have the same color.
2009 AIME Problems, 5
Equilateral triangle $ T$ is inscribed in circle $ A$, which has radius $ 10$. Circle $ B$ with radius $ 3$ is internally tangent to circle $ A$ at one vertex of $ T$. Circles $ C$ and $ D$, both with radius $ 2$, are internally tangent to circle $ A$ at the other two vertices of $ T$. Circles $ B$, $ C$, and $ D$ are all externally tangent to circle $ E$, which has radius $ \frac {m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.
[asy]unitsize(2.2mm);
defaultpen(linewidth(.8pt)+fontsize(8pt));
dotfactor=4;
pair A=(0,0), D=8*dir(330), C=8*dir(210), B=7*dir(90);
pair Ep=(0,4-27/5);
pair[] dotted={A,B,C,D,Ep};
draw(Circle(A,10));
draw(Circle(B,3));
draw(Circle(C,2));
draw(Circle(D,2));
draw(Circle(Ep,27/5));
dot(dotted);
label("$E$",Ep,E);
label("$A$",A,W);
label("$B$",B,W);
label("$C$",C,W);
label("$D$",D,E);[/asy]
2017 All-Russian Olympiad, 4
Are there infinite increasing sequence of natural numbers, such that sum of every 2 different numbers are relatively prime with sum of every 3 different numbers?
2011 All-Russian Olympiad, 3
For positive integers $a>b>1$, define
\[x_n = \frac {a^n-1}{b^n-1}\]
Find the least $d$ such that for any $a,b$, the sequence $x_n$ does not contain $d$ consecutive prime numbers.
[i]V. Senderov[/i]
2018 Indonesia MO, 1
Let $a$ be a positive integer such that $\gcd(an+1, 2n+1) = 1$ for all integer $n$.
a) Prove that $\gcd(a-2, 2n+1) = 1$ for all integer $n$.
b) Find all possible $a$.
2013 NIMO Problems, 8
The number $\frac{1}{2}$ is written on a blackboard. For a real number $c$ with $0 < c < 1$, a [i]$c$-splay[/i] is an operation in which every number $x$ on the board is erased and replaced by the two numbers $cx$ and $1-c(1-x)$. A [i]splay-sequence[/i] $C = (c_1,c_2,c_3,c_4)$ is an application of a $c_i$-splay for $i=1,2,3,4$ in that order, and its [i]power[/i] is defined by $P(C) = c_1c_2c_3c_4$.
Let $S$ be the set of splay-sequences which yield the numbers $\frac{1}{17}, \frac{2}{17}, \dots, \frac{16}{17}$ on the blackboard in some order. If $\sum_{C \in S} P(C) = \tfrac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Lewis Chen[/i]
2012 ELMO Shortlist, 5
Prove that if $m,n$ are relatively prime positive integers, $x^m-y^n$ is irreducible in the complex numbers. (A polynomial $P(x,y)$ is irreducible if there do not exist nonconstant polynomials $f(x,y)$ and $g(x,y)$ such that $P(x,y) = f(x,y)g(x,y)$ for all $x,y$.)
[i]David Yang.[/i]
2012 Online Math Open Problems, 43
An integer $x$ is selected at random between 1 and $2011!$ inclusive. The probability that $x^x - 1$ is divisible by $2011$ can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.
[i]Author: Alex Zhu[/i]
1999 AIME Problems, 10
Ten points in the plane are given, with no three collinear. Four distinct segments joining pairs of these points are chosen at random, all such segments being equally likely. The probability that some three of the segments form a triangle whose vertices are among the ten given points is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2011 NIMO Summer Contest, 1
A jar contains 4 blue marbles, 3 green marbles, and 5 red marbles. If Helen reaches in the jar and selects a marble at random, then the probability that she selects a red marble can be expressed as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
1979 IMO Longlists, 55
Let $a,b$ be coprime integers. Show that the equation $ax^2 + by^2 =z^3$ has an infinite set of solutions $(x,y,z)$ with $\{x,y,z\}\in\mathbb{Z}$ and each pair of $x,y$ mutually coprime.
2008 Iran Team Selection Test, 8
Find all polynomials $ p$ of one variable with integer coefficients such that if $ a$ and $ b$ are natural numbers such that $ a \plus{} b$ is a perfect square, then $ p\left(a\right) \plus{} p\left(b\right)$ is also a perfect square.
2005 Purple Comet Problems, 21
In the diagram below $ \angle CAB, \angle CBD$, and $\angle CDE$ are all right angles with side lengths $AC = 3$, $BC = 5$, $BD = 12$, and $DE = 84$. The distance from point $E$ to the line $AB$ can be expressed as the ratio of two relatively prime positive integers, $m$ and $n$. Find $m + n$.
[asy]
size(300);
defaultpen(linewidth(0.8));
draw(origin--(3,0)--(0,4)--cycle^^(0,4)--(6,8)--(3,0)--(30,-4)--(6,8));
label("$A$",origin,SW);
label("$B$",(0,4),dir(160));
label("$C$",(3,0),S);
label("$D$",(6,8),dir(80));
label("$E$",(30,-4),E);[/asy]
2001 AIME Problems, 9
In triangle $ABC$, $AB=13,$ $BC=15$ and $CA=17.$ Point $D$ is on $\overline{AB},$ $E$ is on $\overline{BC},$ and $F$ is on $\overline{CA}.$ Let $AD=p\cdot AB,$ $BE=q\cdot BC,$ and $CF=r\cdot CA,$ where $p,$ $q,$ and $r$ are positive and satisfy $p+q+r=2/3$ and $p^2+q^2+r^2=2/5.$ The ratio of the area of triangle $DEF$ to the area of triangle $ABC$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2012 AIME Problems, 15
There are $n$ mathematicians seated around a circular table with $n$ seats numbered $1,2,3,\cdots,n$ in clockwise order. After a break they again sit around the table. The mathematicians note that there is a positive integer $a$ such that
(1) for each $k$, the mathematician who was seated in seat $k$ before the break is seated in seat $ka$ after the break (where seat $i+n$ is seat $i$);
(2) for every pair of mathematicians, the number of mathematicians sitting between them after the break, counting in both the clockwise and the counterclockwise directions, is different from either of the number of mathematicians sitting between them before the break.
Find the number of possible values of $n$ with $1<n<1000$.
1995 AIME Problems, 7
Given that $(1+\sin t)(1+\cos t)=5/4$ and \[ (1-\sin t)(1-\cos t)=\frac mn-\sqrt{k}, \] where $k, m,$ and $n$ are positive integers with $m$ and $n$ relatively prime, find $k+m+n.$
2013 Online Math Open Problems, 30
Let $P(t) = t^3+27t^2+199t+432$. Suppose $a$, $b$, $c$, and $x$ are distinct positive reals such that $P(-a)=P(-b)=P(-c)=0$, and \[
\sqrt{\frac{a+b+c}{x}} = \sqrt{\frac{b+c+x}{a}} + \sqrt{\frac{c+a+x}{b}} + \sqrt{\frac{a+b+x}{c}}. \] If $x=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m+n$.
[i]Proposed by Evan Chen[/i]
2009 Indonesia TST, 2
For every positive integer $ n$, let $ \phi(n)$ denotes the number of positive integers less than $ n$ that is relatively prime to $ n$ and $ \tau(n)$ denote the sum of all positive divisors of $ n$. Let $ n$ be a positive integer such that $ \phi(n)|n\minus{}1$ and that $ n$ is not a prime number. Prove that $ \tau(n)>2009$.
2014 NIMO Problems, 6
Let $\varphi(k)$ denote the numbers of positive integers less than or equal to $k$ and relatively prime to $k$. Prove that for some positive integer $n$, \[ \varphi(2n-1) + \varphi(2n+1) < \frac{1}{1000} \varphi(2n). \][i]Proposed by Evan Chen[/i]
2006 Team Selection Test For CSMO, 1
Find all the pairs of positive numbers such that the last
digit of their sum is 3, their difference is a primer number and
their product is a perfect square.
2012 AIME Problems, 11
Let $f_1(x) = \frac{2}{3}-\frac{3}{3x+1}$, and for $n \ge 2$, define $f_n(x) = f_1(f_{n-1} (x))$. The value of x that satisfies $f_{1001}(x) = x - 3$ can be expressed in the form $\frac{m}{n}$,
where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2005 Purple Comet Problems, 10
A jar contains $2$ yellow candies, $4$ red candies, and $6$ blue candies. Candies are randomly drawn out of the jar one-by-one and eaten. The probability that the $2$ yellow candies will be eaten before any of the red candies are eaten is given by the fraction $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.