This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2008 Bundeswettbewerb Mathematik, 2

Let the positive integers $ a,b,c$ chosen such that the quotients $ \frac{bc}{b\plus{}c},$ $ \frac{ca}{c\plus{}a}$ and $ \frac{ab}{a\plus{}b}$ are integers. Prove that $ a,b,c$ have a common divisor greater than 1.

2011 Purple Comet Problems, 29

Let $S$ be a randomly selected four-element subset of $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Let $m$ and $n$ be relatively prime positive integers so that the expected value of the maximum element in $S$ is $\dfrac{m}{n}$. Find $m + n$.

2009 Purple Comet Problems, 23

Square $ABCD$ has side length $4$. Points $E$ and $F$ are the midpoints of sides $AB$ and $CD$, respectively. Eight $1$ by $2$ rectangles are placed inside the square so that no two of the eight rectangles overlap (see diagram). If the arrangement of eight rectangles is chosen randomly, then there are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that none of the rectangles crosses the line segment $EF$ (as in the arrangement on the right). Find $m + n$. [asy] size(200); defaultpen(linewidth(0.8)+fontsize(10pt)); real r = 7; path square=origin--(4,0)--(4,4)--(0,4)--cycle; draw(square^^shift((r,0))*square,linewidth(1)); draw((1,4)--(1,0)^^(3,4)--(3,0)^^(0,2)--(1,2)^^(1,3)--(3,3)^^(1,1)--(3,1)^^(2,3)--(2,1)^^(3,2)--(4,2)); draw(shift((r,0))*((2,4)--(2,0)^^(0,2)--(4,2)^^(0,1)--(4,1)^^(0,3)--(2,3)^^(3,4)--(3,2))); label("A",(4,4),NE); label("A",(4+r,4),NE); label("B",(0,4),NW); label("B",(r,4),NW); label("C",(0,0),SW); label("C",(r,0),SW); label("D",(4,0),SE); label("D",(4+r,0),SE); label("E",(2,4),N); label("E",(2+r,4),N); label("F",(2,0),S); label("F",(2+r,0),S); [/asy]

2011 Purple Comet Problems, 18

Let $a$ be a positive real number such that $\tfrac{a^2}{a^4-a^2+1}=\tfrac{4}{37}$. Then $\tfrac{a^3}{a^6-a^3+1}=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2015 Switzerland Team Selection Test, 4

Find all relatively prime integers $a,b$ such that $$a^2+a=b^3+b$$

2007 ITest, 14

Let $\phi(n)$ be the number of positive integers $k<n$ which are relatively prime to $n$. For how many distinct values of $n$ is $\phi(n)$ equal to $12$? $\textbf{(A) }0\hspace{14em}\textbf{(B) }1\hspace{14em}\textbf{(C) }2$ $\textbf{(D) }3\hspace{14em}\textbf{(E) }4\hspace{14em}\textbf{(F) }5$ $\textbf{(G) }6\hspace{14em}\textbf{(H) }7\hspace{14em}\textbf{(I) }8$ $\textbf{(J) }9\hspace{14.2em}\textbf{(K) }10\hspace{13.5em}\textbf{(L) }11$ $\textbf{(M) }12\hspace{13.3em}\textbf{(N) }13$

2013 Online Math Open Problems, 29

Let $\phi(n)$ denote the number of positive integers less than or equal to $n$ that are relatively prime to $n$, and let $d(n)$ denote the number of positive integer divisors of $n$. For example, $\phi(6) = 2$ and $d(6) = 4$. Find the sum of all odd integers $n \le 5000$ such that $n \mid \phi(n) d(n)$. [i]Alex Zhu[/i]

PEN A Problems, 96

Find all positive integers $n$ that have exactly $16$ positive integral divisors $d_{1},d_{2} \cdots, d_{16}$ such that $1=d_{1}<d_{2}<\cdots<d_{16}=n$, $d_6=18$, and $d_{9}-d_{8}=17$.

2010 India IMO Training Camp, 5

Given an integer $k>1$, show that there exist an integer an $n>1$ and distinct positive integers $a_1,a_2,\cdots a_n$, all greater than $1$, such that the sums $\sum_{j=1}^n a_j$ and $\sum_{j=1}^n \phi (a_j)$ are both $k$-th powers of some integers. (Here $\phi (m)$ denotes the number of positive integers less than $m$ and relatively prime to $m$.)

2014 Contests, 1

Prove that every nonzero coefficient of the Taylor series of $(1-x+x^2)e^x$ about $x=0$ is a rational number whose numerator (in lowest terms) is either $1$ or a prime number.

2018 Brazil Team Selection Test, 2

Prove that there is an integer $n>10^{2018}$ such that the sum of all primes less than $n$ is relatively prime to $n$. [i](R. Salimov)[/i]

2013 Purple Comet Problems, 17

A rectangle has side lengths $6$ and $8$. There are relatively prime positive integers $m$ and $n$ so that $\tfrac{m}{n}$ is the probability that a point randomly selected from the inside of the rectangle is closer to a side of the rectangle than to either diagonal of the rectangle. Find $m + n$.

2005 Mexico National Olympiad, 3

Already the complete problem: Determine all pairs $(a,b)$ of integers different from $0$ for which it is possible to find a positive integer $x$ and an integer $y$ such that $x$ is relatively prime to $b$ and in the following list there is an infinity of integers: $\rightarrow\qquad\frac{a + xy}{b}$, $\frac{a + xy^2}{b^2}$, $\frac{a + xy^3}{b^3}$, $\ldots$, $\frac{a + xy^n}{b^n}$, $\ldots$ One idea? :arrow: [b][url=http://www.mathlinks.ro/Forum/viewtopic.php?t=61319]View all the problems from XIX Mexican Mathematical Olympiad[/url][/b]

2003 AIME Problems, 11

Triangle $ABC$ is a right triangle with $AC=7,$ $BC=24,$ and right angle at $C.$ Point $M$ is the midpoint of $AB,$ and $D$ is on the same side of line $AB$ as $C$ so that $AD=BD=15.$ Given that the area of triangle $CDM$ may be expressed as $\frac{m\sqrt{n}}{p},$ where $m,$ $n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p.$

1969 IMO Longlists, 19

$(FRA 2)$ Let $n$ be an integer that is not divisible by any square greater than $1.$ Denote by $x_m$ the last digit of the number $x^m$ in the number system with base $n.$ For which integers $x$ is it possible for $x_m$ to be $0$? Prove that the sequence $x_m$ is periodic with period $t$ independent of $x.$ For which $x$ do we have $x_t = 1$. Prove that if $m$ and $x$ are relatively prime, then $0_m, 1_m, . . . , (n-1)_m$ are different numbers. Find the minimal period $t$ in terms of $n$. If n does not meet the given condition, prove that it is possible to have $x_m = 0 \neq x_1$ and that the sequence is periodic starting only from some number $k > 1.$

2007 ITest, 44

A positive integer $n$ between $1$ and $N=2007^{2007}$ inclusive is selected at random. If $a$ and $b$ are natural numbers such that $a/b$ is the probability that $N$ and $n^3-36n$ are relatively prime, find the value of $a+b$.

2003 Balkan MO, 4

A rectangle $ABCD$ has side lengths $AB = m$, $AD = n$, with $m$ and $n$ relatively prime and both odd. It is divided into unit squares and the diagonal AC intersects the sides of the unit squares at the points $A_1 = A, A_2, A_3, \ldots , A_k = C$. Show that \[ A_1A_2 - A_2A_3 + A_3A_4 - \cdots + A_{k-1}A_k = {\sqrt{m^2+n^2}\over mn}. \]

2004 Austrian-Polish Competition, 7

Determine all functions $f:\mathbb{Z}^+\to \mathbb{Z}$ which satisfy the following condition for all pairs $(x,y)$ of [i]relatively prime[/i] positive integers: \[f(x+y) = f(x+1) + f(y+1).\]

2011 All-Russian Olympiad, 1

Two natural numbers $d$ and $d'$, where $d'>d$, are both divisors of $n$. Prove that $d'>d+\frac{d^2}{n}$.

2000 AIME Problems, 7

Suppose that $x,$ $y,$ and $z$ are three positive numbers that satisfy the equations $xyz=1,$ $x+\frac{1}{z}=5,$ and $y+\frac{1}{x}=29.$ Then $z+\frac{1}{y}=\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

1998 Harvard-MIT Mathematics Tournament, 4

Given that $r$ and $s$ are relatively prime positive integers such that $\dfrac{r}{s}=\dfrac{2(\sqrt{2}+\sqrt{10})}{5\left(\sqrt{3+\sqrt{5}}\right)}$, find $r$ and $s$.

2002 AIME Problems, 9

Harold, Tanya, and Ulysses paint a very long picket fence. Harold starts with the first picket and paints every $h$th picket; Tanya starts with the second picket and paints everth $t$th picket; and Ulysses starts with the third picket and paints every $u$th picket. Call the positive integer $100h+10t+u$ $\textit{paintable}$ when the triple $(h,t,u)$ of positive integers results in every picket being painted exaclty once. Find the sum of all the paintable integers.

PEN O Problems, 57

Prove that every selection of $1325$ integers from $M=\{1, 2, \cdots, 1987 \}$ must contain some three numbers $\{a, b, c\}$ which are pairwise relatively prime, but that it can be avoided if only $1324$ integers are selected.

2021 Iran Team Selection Test, 3

Prove there exist two relatively prime polynomials $P(x),Q(x)$ having integer coefficients and a real number $u>0$ such that if for positive integers $a,b,c,d$ we have: $$|\frac{a}{c}-1|^{2021} \le \frac{u}{|d||c|^{1010}}$$ $$| (\frac{a}{c})^{2020}-\frac{b}{d}| \le \frac{u}{|d||c|^{1010}}$$ Then we have : $$bP(\frac{a}{c})=dQ(\frac{a}{c})$$ (Two polynomials are relatively prime if they don't have a common root) Proposed by [i]Navid Safaii[/i] and [i]Alireza Haghi[/i]

1998 Korea - Final Round, 1

Find all pairwise relatively prime positive integers $l, m, n$ such that \[(l+m+n)\left( \frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)\] is an integer.