Found problems: 698
2008 ITest, 37
A triangle has sides of length $48$, $55$, and $73$. Let $a$ and $b$ be relatively prime positive integers such that $a/b$ is the length of the shortest altitude of the triangle. Find the value of $a+b$.
2010 Postal Coaching, 6
Find all polynomials $P$ with integer coefficients which satisfy the property that, for any relatively prime integers $a$ and $b$, the sequence $\{P (an + b) \}_{n \ge 1}$ contains an infinite number of terms, any two of which are relatively prime.
2000 AIME Problems, 3
A deck of forty cards consists of four 1's, four 2's,..., and four 10's. A matching pair (two cards with the same number) is removed from the deck. Given that these cards are not returned to the deck, let $m/n$ be the probability that two randomly selected cards also form a pair, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
PEN O Problems, 37
Let $n$, $k$ be positive integers such that $n$ is not divisible by $3$ and $k\ge n$. Prove that there exists a positive integer m which is divisible by $n$ and the sum of its digits in the decimal representation is $k$.
2021 Purple Comet Problems, 23
The sum $$\sum_{k=3}^{\infty} \frac{1}{k(k^4-5k^2+4)^2}$$ is equal to $\frac{m^2}{2n^2}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2013 Purple Comet Problems, 26
The diagram below shows the first three figures of a sequence of figures. The first figure shows an equilateral triangle $ABC$ with side length $1$. The leading edge of the triangle going in a clockwise direction around $A$ is labeled $\overline{AB}$ and is darkened in on the figure. The second figure shows the same equilateral triangle with a square with side length $1$ attached to the leading clockwise edge of the triangle. The third figure shows the same triangle and square with a regular pentagon with side length $1$ attached to the leading clockwise edge of the square. The fourth figure in the sequence will be formed by attaching a regular hexagon with side length $1$ to the leading clockwise edge of the pentagon. The hexagon will overlap the triangle. Continue this sequence through the eighth figure. After attaching the last regular figure (a regular decagon), its leading clockwise edge will form an angle of less than $180^\circ$ with the side $\overline{AC}$ of the equilateral triangle. The degree measure of that angle can be written in the form $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(250);
defaultpen(linewidth(0.7)+fontsize(10));
pair x[],y[],z[];
x[0]=origin;
x[1]=(5,0);
x[2]=rotate(60,x[0])*x[1];
draw(x[0]--x[1]--x[2]--cycle);
for(int i=0;i<=2;i=i+1)
{
y[i]=x[i]+(15,0);
}
y[3]=rotate(90,y[0])*y[2];
y[4]=rotate(-90,y[2])*y[0];
draw(y[0]--y[1]--y[2]--y[0]--y[3]--y[4]--y[2]);
for(int i=0;i<=4;i=i+1)
{
z[i]=y[i]+(15,0);
}
z[5]=rotate(108,z[4])*z[2];
z[6]=rotate(108,z[5])*z[4];
z[7]=rotate(108,z[6])*z[5];
draw(z[0]--z[1]--z[2]--z[0]--z[3]--z[4]--z[2]--z[7]--z[6]--z[5]--z[4]);
dot(x[2]^^y[2]^^z[2],linewidth(3));
draw(x[2]--x[0]^^y[2]--y[4]^^z[2]--z[7],linewidth(1));
label("A",(x[2].x,x[2].y-.3),S);
label("B",origin,S);
label("C",x[1],S);[/asy]
2007 Baltic Way, 16
Let $a$ and $b$ be rational numbers such that $s=a+b=a^2+b^2$. Prove that $s$ can be written as a fraction where the denominator is relatively prime to $6$.
PEN A Problems, 23
(Wolstenholme's Theorem) Prove that if \[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}\] is expressed as a fraction, where $p \ge 5$ is a prime, then $p^{2}$ divides the numerator.
2019 PUMaC Combinatorics B, 2
Suppose Alan, Michael, Kevin, Igor, and Big Rahul are in a running race. It is given that exactly one pair of people tie (for example, two people both get second place), so that no other pair of people end in the same position. Each competitor has equal skill; this means that each outcome of the race, given that exactly two people tie, is equally likely. The probability that Big Rahul gets first place (either by himself or he ties for first) can be expressed in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$.
2020 AMC 10, 15
A positive integer divisor of $12!$ is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23$
2010 Romanian Masters In Mathematics, 6
Given a polynomial $f(x)$ with rational coefficients, of degree $d \ge 2$, we define the sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \ldots$ as $f^0(\mathbb{Q})=\mathbb{Q}$, $f^{n+1}(\mathbb{Q})=f(f^{n}(\mathbb{Q}))$ for $n\ge 0$. (Given a set $S$, we write $f(S)$ for the set $\{f(x)\mid x\in S\})$.
Let $f^{\omega}(\mathbb{Q})=\bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$, $n\geq 0$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set.
[i]Dan Schwarz, Romania[/i]
2019 PUMaC Geometry B, 4
Suppose we choose two numbers $x,y\in[0,1]$ uniformly at random. If the probability that the circle with center $(x,y)$ and radius $|x-y|$ lies entirely within the unit square $[0,1]\times [0,1]$ is written as $\tfrac{p}{q}$ with $p$ and $q$ relatively prime nonnegative integers, then what is $p^2+q^2$?
1985 IMO Shortlist, 13
Let $m$ boxes be given, with some balls in each box. Let $n < m$ be a given integer. The following operation is performed: choose $n$ of the boxes and put $1$ ball in each of them. Prove:
[i](a) [/i]If $m$ and $n$ are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls.
[i](b)[/i] If $m$ and $n$ are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.
2010 Purple Comet Problems, 28
There are relatively prime positive integers $p$ and $q$ such that $\dfrac{p}{q}=\displaystyle\sum_{n=3}^{\infty} \dfrac{1}{n^5-5n^3+4n}$. Find $p+q$.
2022 Bulgaria JBMO TST, 3
The integers $a$, $b$, $c$ and $d$ are such that $a$ and $b$ are relatively prime, $d\leq 2022$ and $a+b+c+d = ac + bd = 0$. Determine the largest possible value of $d$,
2003 All-Russian Olympiad Regional Round, 9.7
Prove that of any six four-digit numbers, mutual prime in total, you can always choose five numbers that are also relatively prime in total.
[hide=original wording]Докажите, что из любых шести четырехзначных чисел, взаимно простых в совокупности, всегда можно выбратьпя ть чисел, также взаимно простых в совокупности.[/hide]
2004 India IMO Training Camp, 3
Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds $v_1$ and $v_2$ respectively, where $v_1$ and $v_2$ are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that
(a) at any given time $t$, at least one of the runners is at a distance not more than $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units from the starting point.
(b) there is a time $t$ such that both the runners are at least $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units away from the starting point. (All disstances are measured along the track). $[x]$ is the greatest integer function.
2009 Purple Comet Problems, 18
On triangle $ABC$ let $D$ be the point on $AB$ so that $CD$ is an altitude of the triangle, and $E$ be the point on $BC$ so that $AE$ bisects angle $BAC.$ Let $G$ be the intersection of $AE$ and $CD,$ and let point $F$ be the intersection of side $AC$ and the ray $BG.$ If $AB$ has length $28,$ $AC$ has length $14,$ and $CD$ has length $10,$ then the length of $CF$ can be written as $\tfrac{k-m\sqrt{p}}{n}$ where $k, m, n,$ and $p$ are positive integers, $k$ and $n$ are relatively prime, and $p$ is not divisible by the square of any
prime. Find $k - m + n + p.$
2001 Korea - Final Round, 1
Given an odd prime $p$, find all functions $f:Z \rightarrow Z$ satisfying the following two conditions:
(i) $f(m)=f(n)$ for all $m,n \in Z$ such that $m\equiv n\pmod p$;
(ii) $f(mn)=f(m)f(n)$ for all $m,n \in Z$.
2011 AIME Problems, 1
Jar A contains four liters of a solution that is $45\%$ acid. Jar B contains five liters of a solution that is $48\%$ acid. Jar C contains one liter of a solution that is $k\%$ acid. From jar C, $\tfrac{m}{n}$ liters of the solution is added to jar A, and the remainder of the solution in jar C is added to jar B. At the end, both jar A and jar B contain solutions that are $50\%$ acid. Given that $m$ and $n$ are relatively prime positive integers, find $k+m+n$.
2009 Hungary-Israel Binational, 1
For a given prime $ p > 2$ and positive integer $ k$ let \[ S_k \equal{} 1^k \plus{} 2^k \plus{} \ldots \plus{} (p \minus{} 1)^k\] Find those values of $ k$ for which $ p \, |\, S_k$.
1991 Balkan MO, 2
Show that there are infinitely many noncongruent triangles which satisfy the following conditions:
i) the side lengths are relatively prime integers;
ii)the area is an integer number;
iii)the altitudes' lengths are not integer numbers.
2010 Purple Comet Problems, 11
A jar contains one white marble, two blue marbles, three red marbles, and four green marbles. If you select two of these marbles without replacement, the probability that both marbles will be the same color is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$