This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

PEN A Problems, 110

For each positive integer $n$, write the sum $\sum_{m=1}^n 1/m$ in the form $p_n/q_n$, where $p_n$ and $q_n$ are relatively prime positive integers. Determine all $n$ such that 5 does not divide $q_n$.

1978 IMO Longlists, 11

Find all natural numbers $n < 1978$ with the following property: If $m$ is a natural number, $1 < m < n$, and $(m, n) = 1$ (i.e., $m$ and $n$ are relatively prime), then $m$ is a prime number.

2009 AIME Problems, 8

Dave rolls a fair six-sided die until a six appears for the first time. Independently, Linda rolls a fair six-sided die until a six appears for the first time. Let $ m$ and $ n$ be relatively prime positive integers such that $ \frac{m}{n}$ is the probability that the number of times Dave rolls his die is equal to or within one of the number of times Linda rolls her die. Find $ m\plus{}n$.

1992 IMO Longlists, 68

Show that the numbers $\tan \left(\frac{r \pi }{15}\right)$, where $r$ is a positive integer less than $15$ and relatively prime to $15$, satisfy \[x^8 - 92x^6 + 134x^4 - 28x^2 + 1 = 0.\]

2006 AIME Problems, 10

Seven teams play a soccer tournament in which each team plays every other team exactly once. No ties occur, each team has a $50\%$ chance of winning each game it plays, and the outcomes of the games are independent. In each game, the winner is awarded a point and the loser gets 0 points. The total points are accumilated to decide the ranks of the teams. In the first game of the tournament, team $A$ beats team $B$. The probability that team $A$ finishes with more points than team $B$ is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1969 All Soviet Union Mathematical Olympiad, 120

Given natural $n$. Consider all the fractions $1/(pq)$, where $p$ and $q$ are relatively prime, $0<p<q\le n , p+q>n$. Prove that the sum of all such a fractions equals to $1/2$.

2013 Math Prize for Girls Olympiad, 3

$10000$ nonzero digits are written in a $100$-by-$100$ table, one digit per cell. From left to right, each row forms a $100$-digit integer. From top to bottom, each column forms a $100$-digit integer. So the rows and columns form $200$ integers (each with $100$ digits), not necessarily distinct. Prove that if at least $199$ of these $200$ numbers are divisible by $2013$, then all of them are divisible by $2013$.

1979 IMO, 1

If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.

2019 PUMaC Geometry A, 3

Suppose we choose two numbers $x,y\in[0,1]$ uniformly at random. If the probability that the circle with center $(x,y)$ and radius $|x-y|$ lies entirely within the unit square $[0,1]\times [0,1]$ is written as $\tfrac{p}{q}$ with $p$ and $q$ relatively prime nonnegative integers, then what is $p^2+q^2$?

2001 AIME Problems, 4

Let $R=(8,6)$. The lines whose equations are $8y=15x$ and $10y=3x$ contain points $P$ and $Q$, respectively, such that $R$ is the midpoint of $\overline{PQ}$. The length of $PQ$ equals $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2012 AIME Problems, 12

Let $\triangle ABC$ be a right triangle with right angle at $C$. Let $D$ and $E$ be points on $\overline{AB}$ with $D$ between $A$ and $E$ such that $\overline{CD}$ and $\overline{CE}$ trisect $\angle C$. If $\frac{DE}{BE} = \frac{8}{15}$, then $\tan B$ can be written as $\frac{m\sqrt{p}}{n}$, where $m$ and $n$ are relatively prime positive integers, and $p$ is a positive integer not divisible by the square of any prime. Find $m+n+p$.

2014 NIMO Problems, 6

Suppose we wish to pick a random integer between $1$ and $N$ inclusive by flipping a fair coin. One way we can do this is through generating a random binary decimal between $0$ and $1$, then multiplying the result by $N$ and taking the ceiling. However, this would take an infinite amount of time. We therefore stopping the flipping process after we have enough flips to determine the ceiling of the number. For instance, if $N=3$, we could conclude that the number is $2$ after flipping $.011_2$, but $.010_2$ is inconclusive. Suppose $N=2014$. The expected number of flips for such a process is $\frac{m}{n}$ where $m$, $n$ are relatively prime positive integers, find $100m+n$. [i]Proposed by Lewis Chen[/i]

2012 NIMO Problems, 7

For every pair of reals $0 < a < b < 1$, we define sequences $\{x_n\}_{n \ge 0}$ and $\{y_n\}_{n \ge 0}$ by $x_0 = 0$, $y_0 = 1$, and for each integer $n \ge 1$: \begin{align*} x_n & = (1 - a) x_{n - 1} + a y_{n - 1}, \\ y_n & = (1 - b) x_{n - 1} + b y_{n - 1}. \end{align*} The [i]supermean[/i] of $a$ and $b$ is the limit of $\{x_n\}$ as $n$ approaches infinity. Over all pairs of real numbers $(p, q)$ satisfying $\left (p - \textstyle\frac{1}{2} \right)^2 + \left (q - \textstyle\frac{1}{2} \right)^2 \le \left(\textstyle\frac{1}{10}\right)^2$, the minimum possible value of the supermean of $p$ and $q$ can be expressed as $\textstyle\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2011 Middle European Mathematical Olympiad, 8

We call a positive integer $n$ [i]amazing[/i] if there exist positive integers $a, b, c$ such that the equality \[n = (b, c)(a, bc) + (c, a)(b, ca) + (a, b)(c, ab)\] holds. Prove that there exist $2011$ consecutive positive integers which are [i]amazing[/i]. [b]Note.[/b] By $(m, n)$ we denote the greatest common divisor of positive integers $m$ and $n$.

2001 AIME Problems, 9

Each unit square of a 3-by-3 unit-square grid is to be colored either blue or red. For each square, either color is equally likely to be used. The probability of obtaining a grid that does not have a 2-by-2 red square is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2008 Purple Comet Problems, 14

A circular track with diameter $500$ is externally tangent at a point A to a second circular track with diameter $1700.$ Two runners start at point A at the same time and run at the same speed. The first runner runs clockwise along the smaller track while the second runner runs clockwise along the larger track. There is a first time after they begin running when their two positions are collinear with the point A. At that time each runner will have run a distance of $\frac{m\pi}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n. $

2002 Italy TST, 3

Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $(x,y)$ such that $(\text{i})$ $x$ and $y$ are relatively prime; $(\text{ii})$ $x$ divides $y^2+m;$ $(\text{iii})$ $y$ divides $x^2+m.$

2014 Online Math Open Problems, 27

A frog starts at $0$ on a number line and plays a game. On each turn the frog chooses at random to jump $1$ or $2$ integers to the right or left. It stops moving if it lands on a nonpositive number or a number on which it has already landed. If the expected number of times it will jump is $\tfrac{p}{q}$ for relatively prime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Michael Kural[/i]

2000 Turkey MO (2nd round), 2

Let define $P_{n}(x)=x^{n-1}+x^{n-2}+x^{n-3}+ \dots +x+1$ for every positive integer $n$. Prove that for every positive integer $a$ one can find a positive integer $n$ and polynomials $R(x)$ and $Q(x)$ with integer coefficients such that \[P_{n}(x)= [1+ax+x^{2}R(x)] Q(x).\]

2012 Albania Team Selection Test, 4

Find all couples of natural numbers $(a,b)$ not relatively prime ($\gcd(a,b)\neq\ 1$) such that \[\gcd(a,b)+9\operatorname{lcm}[a,b]+9(a+b)=7ab.\]

2013 Math Prize For Girls Problems, 19

If $n$ is a positive integer, let $\phi(n)$ be the number of positive integers less than or equal to $n$ that are relatively prime to $n$. Compute the value of the infinite sum \[ \sum_{n=1}^\infty \frac{\phi(n) 2^n}{9^n - 2^n} \, . \]

2005 MOP Homework, 3

For any positive integer $n$, the sum $1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n}$ is written in the lowest form $\frac{p_n}{q_n}$; that is, $p_n$ and $q_n$ are relatively prime positive integers. Find all $n$ such that $p_n$ is divisible by $3$.

2011 South africa National Olympiad, 5

Let $\mathbb{N}_0$ denote the set of all nonnegative integers. Determine all functions $f:\mathbb{N}_0\to\mathbb{N}_0$ with the following two properties: [list] [*] $0\le f(x)\le x^2$ for all $x\in\mathbb{N}_0$ [*] $x-y$ divides $f(x)-f(y)$ for all $x,y\in\mathbb{N}_0$ with $x>y$[/list]

2015 Korea National Olympiad, 4

For a positive integer $n$, $a_1, a_2, \cdots a_k$ are all positive integers without repetition that are not greater than $n$ and relatively prime to $n$. If $k>8$, prove the following. $$\sum_{i=1}^k |a_i-\frac{n}{2}|<\frac{n(k-4)}{2}$$

2004 Purple Comet Problems, 9

How many positive integers less that $200$ are relatively prime to either $15$ or $24$?