This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 84

1954 Miklós Schweitzer, 8

Tags: ring theory
[b]8.[/b] Prove the following generalization of the well-known Chinese remainder theorem: Let $R$ be a ring with unit element and let $A_{1},A_{2},\dots . A_{n} (n\geqslant 2)$ be pairwise relative prime ideals of $R$. Then, for arbitrary elements $c_{1},c_{2}, \dots , c_{n}$ of $R$, there exists an element $x\in R$ such that $x-c_{k} \in A_{k} (k= 1,2, \dots , n)$. [b](A. 17)[/b]

2011 Mongolia Team Selection Test, 1

Let $A=\{a^2+13b^2 \mid a,b \in\mathbb{Z}, b\neq0\}$. Prove that there a) exist b) exist infinitely many $x,y$ integer pairs such that $x^{13}+y^{13} \in A$ and $x+y \notin A$. (proposed by B. Bayarjargal)

2011 District Olympiad, 4

Let be a ring $ A. $ Denote with $ N(A) $ the subset of all nilpotent elements of $ A, $ with $ Z(A) $ the center of $ A, $ and with $ U(A) $ the units of $ A. $ Prove: [b]a)[/b] $ Z(A)=A\implies N(A)+U(A)=U(A) . $ [b]b)[/b] $ \text{card} (A)\in\mathbb{N}\wedge a+U(A)\subset U(A)\implies a\in N(A) . $

2005 VJIMC, Problem 4

Let $R$ ba a finite ring with the following property: for any $a,b\in R$ there exists an element $c\in R$ (depending on $a$ and $b$) such that $a^2+b^2=c^2$. Prove that for any $a,b,c\in R$ there exists $d\in R$ such that $2abc=d^2$. (Here $2abc$ denotes $abc+abc$. The ring $R$ is assumed to be associative, but not necessarily commutative and not necessarily containing a unit.

2012 Centers of Excellency of Suceava, 2

Show that $$ \left\{ X\in\mathcal{M}_2\left( \mathbb{Z}_3 \right)\left| \begin{pmatrix} 1&1\\2&2 \end{pmatrix} X\begin{pmatrix} 1&2\\2&1 \end{pmatrix} =0 \right. \right\} $$ is a multiplicative ring. [i]Cătălin Țigăeru[/i]

2009 Romania National Olympiad, 2

[b]a)[/b] Show that the set of nilpotents of a finite, commutative ring, is closed under each of the operations of the ring. [b]b)[/b] Prove that the number of nilpotents of a finite, commutative ring, divides the number of divisors of zero of the ring.

2000 Romania National Olympiad, 4

Prove that a nontrivial finite ring is not a skew field if and only if the equation $ x^n+y^n=z^n $ has nontrivial solutions in this ring for any natural number $ n. $

2006 VJIMC, Problem 1

(a) Let $u$ and $v$ be two nilpotent elements in a commutative ring (with or without unity). Prove that $u+v$ is also nilpotent. (b) Show an example of a (non-commutative) ring $R$ and nilpotent elements $u,v\in R$ such that $u+v$ is not nilpotent.

2009 Romania National Olympiad, 3

Find the natural numbers $ n\ge 2 $ which have the property that the ring of integers modulo $ n $ has exactly an element that is not a sum of two squares.

2011 Romania National Olympiad, 1

Prove that a ring that has a prime characteristic admits nonzero nilpotent elements if and only if its characteristic divides the number of its units.

2001 VJIMC, Problem 4

Let $R$ be an associative non-commutative ring and let $n>2$ be a fixed natural number. Assume that $x^n=x$ for all $x\in R$. Prove that $xy^{n-1}=y^{n-1}x$ holds for all $x,y\in R$.

2004 Alexandru Myller, 1

Show that the equation $ (x+y)^{-1}=x^{-1}+y^{-1} $ has a solution in the field of integers modulo $ p $ if and only if $ p $ is a prime congruent to $ 1 $ modulo $ 3. $ [i]Mihai Piticari[/i]

2014 Romania National Olympiad, 1

For a ring $ A, $ and an element $ a $ of it, define $ s_a,d_a:A\longrightarrow A, s_a(x)=ax,d_a=xa.$ [b]a)[/b] Prove that if $ A $ is finite, then $ s_a $ is injective if and only if $ d_a $ is injective. [b]b)[/b] Give example of a ring which has an element $ b $ for which $ s_b $ is injective and $ d_b $ is not, or, conversely, $ s_b $ is not injective, but $ d_b $ is.

2008 Alexandru Myller, 4

In a certain ring there are as many units as there are nilpotent elements. Prove that the order of the ring is a power of $ 2. $ [i]Dinu Şerbănescu[/i]

2011 Laurențiu Duican, 4

Consider a finite field $ K. $ [b]a)[/b] Prove that there is an element $ k $ in $ K $ having the property that the polynom $ X^3+k $ is irreducible in $ K[X], $ if $ \text{ord} (K)\equiv 1\pmod {12}. $ [b]b)[/b] Is [b]a)[/b] still true if, intead, $ \text{ord} (K) \equiv -1\pmod{12} ? $ [i]Dorel Miheț[/i]

2017 District Olympiad, 4

Let $ A $ be a ring that is not a division ring, and such that any non-unit of it is idempotent. Show that: [b]a)[/b] $ \left( U(A) +A\setminus\left( U(A)\cup \{ 0\} \right) \right)\cap U(A) =\emptyset . $ [b]b)[/b] Every element of $ A $ is idempotent.

2010 Romania National Olympiad, 2

We say that a ring $A$ has property $(P)$ if any non-zero element can be written uniquely as the sum of an invertible element and a non-invertible element. a) If in $A$, $1+1=0$, prove that $A$ has property $(P)$ if and only if $A$ is a field. b) Give an example of a ring that is not a field, containing at least two elements, and having property $(P)$. [i]Dan Schwarz[/i]

2007 IberoAmerican Olympiad For University Students, 6

Let $F$ be a field whose characteristic is not $2$, let $F^*=F\setminus\left\{0\right\}$ be its multiplicative group and let $T$ be the subgroup of $F^*$ constituted by its finite order elements. Prove that if $T$ is finite, then $T$ is cyclic and its order is even.

1993 China Team Selection Test, 3

Let $ABC$ be a triangle and its bisector at $A$ cuts its circumcircle at $D.$ Let $I$ be the incenter of triangle $ABC,$ $M$ be the midpoint of $BC,$ $P$ is the symmetric to $I$ with respect to $M$ (Assuming $P$ is in the circumcircle). Extend $DP$ until it cuts the circumcircle again at $N.$ Prove that among segments $AN, BN, CN$, there is a segment that is the sum of the other two.

2002 All-Russian Olympiad, 1

The polynomials $P$, $Q$, $R$ with real coefficients, one of which is degree $2$ and two of degree $3$, satisfy the equality $P^2+Q^2=R^2$. Prove that one of the polynomials of degree $3$ has three real roots.

2002 All-Russian Olympiad, 1

The polynomials $P$, $Q$, $R$ with real coefficients, one of which is degree $2$ and two of degree $3$, satisfy the equality $P^2+Q^2=R^2$. Prove that one of the polynomials of degree $3$ has three real roots.

2016 Miklós Schweitzer, 3

Prove that for any polynomial $P$ with real coefficients, and for any positive integer $n$, there exists a polynomial $Q$ with real coefficients such that $P(x)^2 +Q(x)^2$ is divisible by $(1+x^2)^n$.

2007 Grigore Moisil Intercounty, 3

Tags: ring theory
Let be a nontrivial finite ring having the property that any element of it has an even power that is equal to itself. Prove that [b]a)[/b] the order of the ring is a power of $ 2. $ [b]b)[/b] the sum of all elements of the ring is $ 0. $

2024 District Olympiad, P3

Let $k$ be a positive integer. A ring $(A,+,\cdot)$ has property $P_k$ if for any $a,b\in A$ there exists $c\in A$ such that $a^k=b^k+c^k.$[list=a] [*]Give an example of a finite ring $(A,+,\cdot)$ which [i]does not[/i] have $P_k$ for any $k\geqslant 2.$ [*]Let $n\geqslant 3$ be an integer and $M_n=\{m\in\mathbb{N}:(\mathbb{Z}_n,+,\cdot)\text{ has }P_m\}.$ Prove that all the elements of $M_n$ are odd integers and that $(M_n,\cdot)$ is a monoid. [/list]

2015 Romania National Olympiad, 1

Let be a ring that has the property that all its elements are the product of two idempotent elements of it. Show that: [b]a)[/b] $ 1 $ is the only unit of this ring. [b]b)[/b] this ring is Boolean.