This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2000 Saint Petersburg Mathematical Olympiad, 11.6

What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them. [I]Proposed by D. Karpov[/i]

2013 Tournament of Towns, 4

Eight rooks are placed on a $8\times 8$ chessboard, so that no two rooks attack one another. All squares of the board are divided between the rooks as follows. A square where a rook is placed belongs to it. If a square is attacked by two rooks then it belongs to the nearest rook; in case these two rooks are equidistant from this square each of them possesses a half of the square. Prove that every rook possesses the equal area.

2016 Saint Petersburg Mathematical Olympiad, 2

On a $300 \times 300$ board, several rooks are placed that beat the entire board. Within this case, each rook beats no more than one other rook. At what least $k$, it is possible to state that there is at least one rook in each $k\times k$ square ?

1999 Tournament Of Towns, 6

A rook is allowed to move one cell either horizontally or vertically. After $64$ moves the rook visited all cells of the $8 \times 8$ chessboard and returned back to the initial cell. Prove that the number of moves in the vertical direction and the number of moves in the horizontal direction cannot be equal. (A Shapovalov, R Sadykov)

2015 IFYM, Sozopol, 4

In how many ways can $n$ rooks be placed on a $2n$ x $2n$ chessboard, so that they cover all the white fields?

2024 Israel National Olympiad (Gillis), P7

Tags: combinatorics , path , grid , rook
A rook stands in one cell of an infinite square grid. A different cell was colored blue and mines were placed in $n$ additional cells: the rook cannot stand on or pass through them. It is known that the rook can reach the blue cell in finitely many moves. Can it do so (for every $n$ and such a choice of mines, starting point, and blue cell) in at most [b](a)[/b] $1.99n+100$ moves? [b](b)[/b] $2n-2\sqrt{3n}+100$ moves? [b]Remark.[/b] In each move, the rook goes in a vertical or horizontal line.

2012 Tournament of Towns, 5

In an $8\times 8$ chessboard, the rows are numbers from $1$ to $8$ and the columns are labelled from $a$ to $h$. In a two-player game on this chessboard, the fi rst player has a White Rook which starts on the square $b2$, and the second player has a Black Rook which starts on the square $c4$. The two players take turns moving their rooks. In each move, a rook lands on another square in the same row or the same column as its starting square. However, that square cannot be under attack by the other rook, and cannot have been landed on before by either rook. The player without a move loses the game. Which player has a winning strategy?