This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 117

1970 Putnam, A2

Tags: root , algebra , polynomial
Consider the locus given by the real polynomial equation $$ Ax^2 +Bxy+Cy^2 +Dx^3 +E x^2 y +F xy^2 +G y^3=0,$$ where $B^2 -4AC <0.$ Prove that there is a positive number $\delta$ such that there are no points of the locus in the punctured disk $$0 <x^2 +y^2 < \delta^2.$$

Russian TST 2018, P1

Tags: root , polynomial , algebra
Let $f(x) = x^2 + 2018x + 1$. Let $f_1(x)=f(x)$ and $f_k(x)=f(f_{k-1}(x))$ for all $k\geqslant 2$. Prove that for any positive integer $n{}$, the equation $f_n(x)=0$ has at least two distinct real roots.

1947 Putnam, B5

Let $a,b,c,d$ be distinct integers such that $$(x-a)(x-b)(x-c)(x-d) -4=0$$ has an integer root $r.$ Show that $4r=a+b+c+d.$

1989 IMO Shortlist, 5

Find the roots $ r_i \in \mathbb{R}$ of the polynomial \[ p(x) \equal{} x^n \plus{} n \cdot x^{n\minus{}1} \plus{} a_2 \cdot x^{n\minus{}2} \plus{} \ldots \plus{} a_n\] satisfying \[ \sum^{16}_{k\equal{}1} r^{16}_k \equal{} n.\]

2018 Middle European Mathematical Olympiad, 2

Tags: root , algebra , polynomial
Let $P(x)$ be a polynomial of degree $n\geq 2$ with rational coefficients such that $P(x) $ has $ n$ pairwise different reel roots forming an arithmetic progression .Prove that among the roots of $P(x) $ there are two that are also the roots of some polynomial of degree $2$ with rational coefficients .

1969 IMO Shortlist, 14

$(CZS 3)$ Let $a$ and $b$ be two positive real numbers. If $x$ is a real solution of the equation $x^2 + px + q = 0$ with real coefficients $p$ and $q$ such that $|p| \le a, |q| \le b,$ prove that $|x| \le \frac{1}{2}(a +\sqrt{a^2 + 4b})$ Conversely, if $x$ satisfies the above inequality, prove that there exist real numbers $p$ and $q$ with $|p|\le a, |q|\le b$ such that $x$ is one of the roots of the equation $x^2+px+ q = 0.$

2012 Dutch BxMO/EGMO TST, 1

Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?

1995 Singapore MO Open, 1

Suppose that the rational numbers $a, b$ and $c$ are the roots of the equation $x^3+ax^2 + bx + c = 0$. Find all such rational numbers $a, b$ and $c$. Justify your answer

1988 IMO Longlists, 42

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2019 Canadian Mathematical Olympiad Qualification, 3

Tags: root , polynomial , algebra
Let $f(x) = x^3 + 3x^2 - 1$ have roots $a,b,c$. (a) Find the value of $a^3 + b^3 + c^3$ (b) Find all possible values of $a^2b + b^2c + c^2a$

1989 IMO Longlists, 8

Find the roots $ r_i \in \mathbb{R}$ of the polynomial \[ p(x) \equal{} x^n \plus{} n \cdot x^{n\minus{}1} \plus{} a_2 \cdot x^{n\minus{}2} \plus{} \ldots \plus{} a_n\] satisfying \[ \sum^{16}_{k\equal{}1} r^{16}_k \equal{} n.\]

2006 IMO Shortlist, 4

Tags: root , polynomial , algebra
Let $P(x)$ be a polynomial of degree $n > 1$ with integer coefficients and let $k$ be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x)) \ldots ))$, where $P$ occurs $k$ times. Prove that there are at most $n$ integers $t$ such that $Q(t) = t$.

2001 Saint Petersburg Mathematical Olympiad, 9.2

Define a quadratic trinomial to be "good", if it has two distinct real roots and all of its coefficients are distinct. Do there exist 10 positive integers such that there exist 500 good quadratic trinomials coefficients of which are among these numbers? [I]Proposed by F. Petrov[/i]

2016 Irish Math Olympiad, 3

Tags: root , sum , algebra , polynomial
Do there exist four polynomials $P_1(x), P_2(x), P_3(x), P_4(x)$ with real coefficients, such that the sum of any three of them always has a real root, but the sum of any two of them has no real root?

2020 Brazil Undergrad MO, Problem 6

Let $f(x) = 2x^2 + x - 1, f^{0}(x) = x$, and $f^{n+1}(x) = f(f^{n}(x))$ for all real $x>0$ and $n \ge 0$ integer (that is, $f^{n}$ is $f$ iterated $n$ times). a) Find the number of distinct real roots of the equation $f^{3}(x) = x$ b) Find, for each $n \ge 0$ integer, the number of distinct real solutions of the equation $f^{n}(x) = 0$

2008 Tournament Of Towns, 3

A polynomial $x^n + a_1x^{n-1} + a_2x^{n-2} +... + a_{n-2}x^2 + a_{n-1}x + a_n$ has $n$ distinct real roots $x_1, x_2,...,x_n$, where $n > 1$. The polynomial $nx^{n-1}+ (n - 1)a_1x^{n-2} + (n - 2)a_2x^{n-3} + ...+ 2a_{n-2}x + a_{n-1}$ has roots $y_1, y_2,..., y_{n_1}$. Prove that $\frac{x^2_1+ x^2_2+ ...+ x^2_n}{n}>\frac{y^2_1 + y^2_2 + ...+ y^2_{n-1}}{n - 1}$

1991 IMO Shortlist, 21

Let $ f(x)$ be a monic polynomial of degree $ 1991$ with integer coefficients. Define $ g(x) \equal{} f^2(x) \minus{} 9.$ Show that the number of distinct integer solutions of $ g(x) \equal{} 0$ cannot exceed $ 1995.$

1967 IMO Shortlist, 1

Determine all positive roots of the equation $ x^x = \frac{1}{\sqrt{2}}.$

1976 Euclid, 8

Source: 1976 Euclid Part A Problem 8 ----- Given that $a$, $b$, and $c$ are the roots of the equation $x^3-3x^2+mx+24=0$, and that $-a$ and $-b$ are the roots of the equation $x^2+nx-6=0$, then the value of $n$ is $\textbf{(A) } 1 \qquad \textbf{(B) } -1 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } -7 \qquad \textbf{(E) } \text{none of these}$

1971 IMO Shortlist, 8

Determine whether there exist distinct real numbers $a, b, c, t$ for which: [i](i)[/i] the equation $ax^2 + btx + c = 0$ has two distinct real roots $x_1, x_2,$ [i](ii)[/i] the equation $bx^2 + ctx + a = 0$ has two distinct real roots $x_2, x_3,$ [i](iii)[/i] the equation $cx^2 + atx + b = 0$ has two distinct real roots $x_3, x_1.$

1982 IMO Shortlist, 7

Let $p(x)$ be a cubic polynomial with integer coefficients with leading coefficient $1$ and with one of its roots equal to the product of the other two. Show that $2p(-1)$ is a multiple of $p(1)+p(-1)-2(1+p(0)).$

2006 IMO, 5

Tags: root , algebra , polynomial
Let $P(x)$ be a polynomial of degree $n > 1$ with integer coefficients and let $k$ be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x)) \ldots ))$, where $P$ occurs $k$ times. Prove that there are at most $n$ integers $t$ such that $Q(t) = t$.

1941 Moscow Mathematical Olympiad, 080

How many roots does equation $\sin x = \frac{x}{100}$ have?

1976 IMO Shortlist, 9

Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}(P_{j-1}(x))$ for j$=2,\ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

1958 February Putnam, A1

Tags: root , polynomial
If $a_0 , a_1 ,\ldots, a_n$ are real number satisfying $$ \frac{a_0 }{1} + \frac{a_1 }{2} + \ldots + \frac{a_n }{n+1}=0,$$ show that the equation $a_n x^n + \ldots +a_1 x+a_0 =0$ has at least one real root.