Found problems: 1239
1978 All Soviet Union Mathematical Olympiad, 257
Prove that there exists such an infinite sequence $\{x_i\}$, that for all $m$ and all $k$ ($m\ne k$) holds the inequality $$|x_m-x_k|>1/|m-k|$$
2016 ITAMO, 5
Let $x_0,x_1,x_2,\ldots$ be a sequence of rational numbers defined recursively as follows: $x_0$ can be any rational number and, for $n\ge 0$,
\[
x_{n+1}=\begin{cases} \left|\frac{x_n}2-1\right| & \text{if the numerator of }x_n\text{ is even}, \\
\left|\frac1{x_n}-1\right| & \text{if the numerator of }x_n\text{ is odd},\end{cases}
\]
where by numerator of a rational number we mean the numerator of the fraction in its lowest terms. Prove that for any value of $x_0$:
(a) the sequence contains only finitely many distinct terms;
(b) the sequence contains exactly one of the numbers $0$ and $2/3$ (namely, either there exists an index $k$ such that $x_k=0$, or there exists an index $m$ such that $x_m=2/3$, but not both).
1947 Putnam, A5
Let $a_1 , b_1 , c_1$ be positive real numbers whose sum is $1,$ and for $n=1, 2, \ldots$ we define
$$a_{n+1}= a_{n}^{2} +2 b_n c_n, \;\;\;b_{n+1}= b_{n}^{2} +2 a_n c_n, \;\;\; c_{n+1}= c_{n}^{2} +2 a_n b_n.$$
Show that $a_n , b_n ,c_n$ approach limits as $n\to \infty$ and find those limits.
2016 Turkey EGMO TST, 5
A sequence $a_1, a_2, \ldots $ consisting of $1$'s and $0$'s satisfies for all $k>2016$ that
\[ a_k=0 \quad \Longleftrightarrow \quad a_{k-1}+a_{k-2}+\cdots+a_{k-2016}>23. \]
Prove that there exist positive integers $N$ and $T$ such that $a_k=a_{k+T}$ for all $k>N$.
2023 AMC 12/AHSME, 25
There is a unique sequence of integers $a_1, a_2, \cdots a_{2023}$ such that
$$
\tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x \cdots + a_{2022} \tan^{2022} x}
$$
whenever $\tan 2023x$ is defined. What is $a_{2023}?$
$\textbf{(A) } -2023 \qquad\textbf{(B) } -2022 \qquad\textbf{(C) } -1 \qquad\textbf{(D) } 1 \qquad\textbf{(E) } 2023$
2019 Belarus Team Selection Test, 4.3
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
1971 IMO Longlists, 34
Let $T_k = k - 1$ for $k = 1, 2, 3,4$ and
\[T_{2k-1} = T_{2k-2} + 2^{k-2}, T_{2k} = T_{2k-5} + 2^k \qquad (k \geq 3).\]
Show that for all $k$,
\[1 + T_{2n-1} = \left[ \frac{12}{7}2^{n-1} \right] \quad \text{and} \quad 1 + T_{2n} = \left[ \frac{17}{7}2^{n-1} \right],\]
where $[x]$ denotes the greatest integer not exceeding $x.$
2023 Germany Team Selection Test, 1
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that
$$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$
for all positive integers $n$. Show that $a_{2022}\leq 1$.
1983 IMO Shortlist, 7
Let $a$ be a positive integer and let $\{a_n\}$ be defined by $a_0 = 0$ and
\[a_{n+1 }= (a_n + 1)a + (a + 1)a_n + 2 \sqrt{a(a + 1)a_n(a_n + 1)} \qquad (n = 1, 2 ,\dots ).\]
Show that for each positive integer $n$, $a_n$ is a positive integer.
2007 Grigore Moisil Intercounty, 4
Let $ \left( x_n \right)_{n\ge 1} $ be a sequence of positive real numbers, verifying the inequality $ x_n\le \frac{x_{n-1}+x_{n-2}}{2} , $ for any natural number $ n\ge 3. $
Show that $ \left( x_n \right)_{n\ge 1} $ is convergent.
2003 IMO Shortlist, 3
Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$.
(1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$?
Justify your answer.
2013 Bogdan Stan, 4
Let be a sequence $ \left( x_n \right)_{n\ge 1} $ having the property that
$$ \lim_{n\to\infty } \left( 14(n+2)x_{n+2} -15(n+1)x_{n+1} +nx_n \right) =13. $$
Show that $ \left( x_n \right)_{n\ge 1} $ is convergent and calculate its limit.
[i]Cosmin Nițu[/i]
1978 Germany Team Selection Test, 4
Let $B$ be a set of $k$ sequences each having $n$ terms equal to $1$ or $-1$. The product of two such sequences $(a_1, a_2, \ldots , a_n)$ and $(b_1, b_2, \ldots , b_n)$ is defined as $(a_1b_1, a_2b_2, \ldots , a_nb_n)$. Prove that there exists a sequence $(c_1, c_2, \ldots , c_n)$ such that the intersection of $B$ and the set containing all sequences from $B$ multiplied by $(c_1, c_2, \ldots , c_n)$ contains at most $\frac{k^2}{2^n}$ sequences.
2001 Austrian-Polish Competition, 6
Let $k$ be a fixed positive integer. Consider the sequence definited by \[a_{0}=1 \;\; , a_{n+1}=a_{n}+\left\lfloor\root k \of{a_{n}}\right\rfloor \;\; , n=0,1,\cdots\] where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$. For each $k$ find the set $A_{k}$ containing all integer values of the sequence $(\sqrt[k]{a_{n}})_{n\geq 0}$.
2021 Brazil Team Selection Test, 6
Let $\mathcal{S}$ be a set consisting of $n \ge 3$ positive integers, none of which is a sum of two other distinct members of $\mathcal{S}$. Prove that the elements of $\mathcal{S}$ may be ordered as $a_1, a_2, \dots, a_n$ so that $a_i$ does not divide $a_{i - 1} + a_{i + 1}$ for all $i = 2, 3, \dots, n - 1$.
2000 Mongolian Mathematical Olympiad, Problem 1
Let $\operatorname{rad}(k)$ denote the product of prime divisors of a natural number $k$ (define $\operatorname{rad}(1)=1$). A sequence $(a_n)$ is defined by setting $a_1$ arbitrarily, and $a_{n+1}=a_n+\operatorname{rad}(a_n)$ for $n\ge1$. Prove that the sequence $(a_n)$ contains arithmetic progressions of arbitrary length.
2018 China Second Round Olympiad, 4
Define sequence $\{a_n\}$: $a_1$ is any positive integer, and for any positive integer $n\ge 1$, $a_{n+1}$ is the smallest positive integer coprime to $\sum_{i=1}^{n} a_i$ and not equal to $a_1,\ldots, a_n$. Prove that every positive integer appears in the sequence $\{a_n\}$.
2005 Slovenia National Olympiad, Problem 2
Let $(a_n)$ be a geometrical progression with positive terms. Define $S_n=\log a_1+\log a_2+\ldots+\log a_n$. Prove that if $S_n=S_m$ for some $m\ne n$, then $S_{n+m}=0$.
2021 Romanian Master of Mathematics Shortlist, A4
Let $f: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function such that $f(y) - f(x) < y - x$ for all real numbers
$x$ and $y > x$. The sequence $u_1,u_2,\ldots$ of real numbers is such that $u_{n+2} = f(u_{n+1}) - f(u_n)$ for all $n\geq 1$. Prove that for any $\varepsilon > 0$ there exists a positive integer $N$ such that $|u_n| < \varepsilon$ for all $n\geq N$.
2017 Bosnia and Herzegovina EGMO TST, 1
It is given sequence wih length of $2017$ which consists of first $2017$ positive integers in arbitrary order (every number occus exactly once). Let us consider a first term from sequence, let it be $k$. From given sequence we form a new sequence of length 2017, such that first $k$ elements of new sequence are same as first $k$ elements of original sequence, but in reverse order while other elements stay unchanged. Prove that if we continue transforming a sequence, eventually we will have sequence with first element $1$.
2019 Turkey Team SeIection Test, 2
$(a_{n})_{n=1}^{\infty}$ is an integer sequence, $a_{1}=1$, $a_{2}=2$ and for $n\geq{1}$, $a_{n+2}=a_{n+1}^{2}+(n+2)a_{n+1}-a_{n}^{2}-na_{n}$.
$a)$ Prove that the set of primes that divides at least one term of the sequence can not be finite.
$b)$ Find 3 different prime numbers that do not divide any terms of this sequence.
1974 Swedish Mathematical Competition, 1
Let $a_n = 2^{n-1}$ for $n > 0$. Let
\[
b_n = \sum\limits_{r+s \leq n} a_ra_s
\]
Find $b_n-b_{n-1}$, $b_n-2b_{n-1}$ and $b_n$.
2000 Tournament Of Towns, 4
(a) Does there exist an infinite sequence of real numbers such that the sum of every ten successive numbers is positive, while for every $n$ the sum of the first $10n + 1$ successive numbers is negative?
(b) Does there exist an infinite sequence of integers with the same properties?
(AK Tolpygo)
2023 JBMO Shortlist, A7
Let $a_1,a_2,a_3,\ldots,a_{250}$ be real numbers such that $a_1=2$ and
$$a_{n+1}=a_n+\frac{1}{a_n^2}$$
for every $n=1,2, \ldots, 249$. Let $x$ be the greatest integer which is less than
$$\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_{250}}$$
How many digits does $x$ have?
[i]Proposed by Miroslav Marinov, Bulgaria[/i]
2012 Grand Duchy of Lithuania, 4
Let $m$ be a positive integer. Find all bounded sequences of integers $a_1, a_2, a_3,... $for which $a_n + a_{n+1} + a_{n+m }= 0$ for all $n \in N$.