This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

1987 Traian Lălescu, 1.4

[b]a)[/b] Determine all sequences of real numbers $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ that satisfy $ x_{n+2}+x_{n+1}=x_n, $ for any nonnegative integer $ n. $ [b]b)[/b] If $ y_k>0 $ and $ y_k^k=y_k+k, $ for all naturals $ k, $ calculate $ \lim_{n\to\infty }\frac{\ln n}{n\left( x_n-1\right)} . $

1999 Yugoslav Team Selection Test, Problem 3

Tags: sequence , algebra
Consider the set $A_n=\{x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n\}$ of $2n$ variables. How many permutations of set $A_n$ are there for which it is possible to assign real values from the interval $(0,1)$ to the $2n$ variables so that: (i) $x_i+y_i=1$ for each $i$; (ii) $x_1<x_2<\ldots<x_n$; (iii) the $2n$ terms of the permutation form a strictly increasing sequence?

2006 Grigore Moisil Urziceni, 3

Let be a sequence $ \left( b_n \right)_{n\ge 1} $ of integers, having the following properties: $ \text{(i)} $ the sequence $ \left( \frac{b_n}{n} \right)_{n\ge 1} $ is convergent. $ \text{(ii)} m-n|b_m-b_n, $ for any natural numbers $ m>n. $ Prove that there exists an index from which the sequence $ \left( b_n \right)_{n\ge 1} $ is an arithmetic one. [i]Cristinel Mortici[/i]

2025 VJIMC, 1

Let $x_0=a, x_1= b, x_2 = c$ be given real numbers and let $x_{n+2} = \frac{x_n + x_{n-1}}{2}$ for all $n\geq 1$. Show that the sequence $(x_n)_{n\geq 0}$ converges and find its limit.

2008 Dutch IMO TST, 3

Let $m, n$ be positive integers. Consider a sequence of positive integers $a_1, a_2, ... , a_n$ that satisfies $m = a_1 \ge a_2\ge ... \ge a_n \ge 1$. Then define, for $1\le  i\le  m$, $b_i =$ # $\{ j \in \{1, 2, ... , n\}: a_j \ge i\}$, so $b_i$ is the number of terms $a_j $ of the given sequence for which $a_j  \ge i$. Similarly, we define, for $1\le   j \le  n$, $c_j=$ # $\{ i \in \{1, 2, ... , m\}: b_i \ge j\}$ , thus $c_j$ is the number of terms bi in the given sequence for which $b_i \ge j$. E.g.: If $a$ is the sequence $5, 3, 3, 2, 1, 1$ then $b$ is the sequence $6, 4, 3, 1, 1$. (a) Prove that $a_j = c_j $ for $1  \le j  \le n$. (b) Prove that for $1\le  k \le m$: $\sum_{i=1}^{k} b_i = k \cdot b_k + \sum_{j=b_{k+1}}^{n} a_j$.

2019 Centers of Excellency of Suceava, 2

Let be two real numbers $ b>a>0, $ and a sequence $ \left( x_n \right)_{n\ge 1} $ with $ x_2>x_1>0 $ and such that $$ ax_{n+2}+bx_n\ge (a+b)x_{n+1} , $$ for any natural numbers $ n. $ Prove that $ \lim_{n\to\infty } x_n=\infty . $ [i]Dan Popescu[/i]

1988 IMO Longlists, 74

Let $ \{a_k\}^{\infty}_1$ be a sequence of non-negative real numbers such that: \[ a_k \minus{} 2 a_{k \plus{} 1} \plus{} a_{k \plus{} 2} \geq 0 \] and $ \sum^k_{j \equal{} 1} a_j \leq 1$ for all $ k \equal{} 1,2, \ldots$. Prove that: \[ 0 \leq a_{k} \minus{} a_{k \plus{} 1} < \frac {2}{k^2} \] for all $ k \equal{} 1,2, \ldots$.

2023 Durer Math Competition Finals, 5

$a_1,a_2,\dots,a_k$ and $b_1,b_2,\dots,a_n$ are integer sequences with $a_1=b_1=0$, $a_k=26,b_n=25$, and $k+n=23$. It is known that $a_{i+1}-a_i=2\enspace\text{or}\enspace3$ and $b_{j+1}-b_j=2\enspace\text{or}\enspace3$ for all applicable $i$ and $j$, and the numbers $a_2,\dots,a_k,b_2,\dots,b_n$ are pairwise different. Determine the total number of such pairs of sequences.

2017 Simon Marais Mathematical Competition, A2

Tags: sequence , algebra
Let $a_1,a_2,a_3,\ldots$ be the sequence of real numbers defined by $a_1=1$ and $$a_m=\frac1{a_1^2+a_2^2+\ldots+a_{m-1}^2}\qquad\text{for }m\ge2.$$ Determine whether there exists a positive integer $N$ such that $$a_1+a_2+\ldots+a_N>2017^{2017}.$$

2020 EGMO, 1

The positive integers $a_0, a_1, a_2, \ldots, a_{3030}$ satisfy $$2a_{n + 2} = a_{n + 1} + 4a_n \text{ for } n = 0, 1, 2, \ldots, 3028.$$ Prove that at least one of the numbers $a_0, a_1, a_2, \ldots, a_{3030}$ is divisible by $2^{2020}$.

KoMaL A Problems 2017/2018, A. 712

We say that a strictly increasing positive real sequence $a_1,a_2,\cdots $ is an [i]elf sequence[/i] if for any $c>0$ we can find an $N$ such that $a_n<cn$ for $n=N,N+1,\cdots$. Furthermore, we say that $a_n$ is a [i]hat[/i] if $a_{n-i}+a_{n+i}<2a_n$ for $\displaystyle 1\le i\le n-1$. Is it true that every elf sequence has infinitely many hats?

2007 IMO, 1

Tags: sequence , algebra
Real numbers $ a_{1}$, $ a_{2}$, $ \ldots$, $ a_{n}$ are given. For each $ i$, $ (1 \leq i \leq n )$, define \[ d_{i} \equal{} \max \{ a_{j}\mid 1 \leq j \leq i \} \minus{} \min \{ a_{j}\mid i \leq j \leq n \} \] and let $ d \equal{} \max \{d_{i}\mid 1 \leq i \leq n \}$. (a) Prove that, for any real numbers $ x_{1}\leq x_{2}\leq \cdots \leq x_{n}$, \[ \max \{ |x_{i} \minus{} a_{i}| \mid 1 \leq i \leq n \}\geq \frac {d}{2}. \quad \quad (*) \] (b) Show that there are real numbers $ x_{1}\leq x_{2}\leq \cdots \leq x_{n}$ such that the equality holds in (*). [i]Author: Michael Albert, New Zealand[/i]

1978 Germany Team Selection Test, 3

Let $n$ be an integer greater than $1$. Define \[x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i = 1, 2, \ldots\ ,\] where $[z]$ denotes the largest integer less than or equal to $z$. Prove that \[ \min \{x_1, x_2, \ldots, x_n \} =[ \sqrt n ]\]

2017 Romania EGMO TST, P2

Determine all pairs $(a,b)$ of positive integers with the following property: all of the terms of the sequence $(a^n+b^n+1)_{n\geqslant 1}$ have a greatest common divisor $d>1.$

1987 Bulgaria National Olympiad, Problem 1

Let $f(x)=x^n+a_1x^{n-1}+\ldots+a_n~(n\ge3)$ be a polynomial with real coefficients and $n$ real roots, such that $\frac{a_{n-1}}{a_n}>n+1$. Prove that if $a_{n-2}=0$, then at least one root of $f(x)$ lies in the open interval $\left(-\frac12,\frac1{n+1}\right)$.

2021 Taiwan TST Round 1, N

For each positive integer $n$, define $V_n=\lfloor 2^n\sqrt{2020}\rfloor+\lfloor 2^n\sqrt{2021}\rfloor$. Prove that, in the sequence $V_1,V_2,\ldots,$ there are infinitely many odd integers, as well as infinitely many even integers. [i]Remark.[/i] $\lfloor x\rfloor$ is the largest integer that does not exceed the real number $x$.

2020 Romania EGMO TST, P1

Let $a$ be a positive integer and $(a_n)_{n\geqslant 1}$ be a sequence of positive integers satisfying $a_n<a_{n+1}\leqslant a_n+a$ for all $n\geqslant 1$. Prove that there are infinitely many primes which divide at least one term of the sequence. [i]Moldavia Olympiad, 1994[/i]

2023 SEEMOUS, P4

Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous, strictly decreasing function such that $f([0,1])\subseteq[0,1]$. [list=i] [*]For all positive integers $n{}$ prove that there exists a unique $a_n\in(0,1)$, solution of the equation $f(x)=x^n$. Moreover, if $(a_n){}$ is the sequence defined as above, prove that $\lim_{n\to\infty}a_n=1$. [*]Suppose $f$ has a continuous derivative, with $f(1)=0$ and $f'(1)<0$. For any $x\in\mathbb{R}$ we define \[F(x)=\int_x^1f(t) \ dt.\]Let $\alpha{}$ be a real number. Study the convergence of the series \[\sum_{n=1}^\infty F(a_n)^\alpha.\] [/list]

2013 IMO Shortlist, A4

Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]

1980 IMO, 2

Find the greatest natural number $n$ such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}< a_{2}< \ldots < a_{n-1}$ satisfying the following equations for $i =1,2,\ldots,n-1$: \[x_{1}x_{2}\ldots x_{n}= 1980 \quad \text{and}\quad x_{i}+\frac{1980}{x_{i}}= a_{i}.\]

1985 IMO Shortlist, 6

Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that \[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]

2010 Saudi Arabia Pre-TST, 2.3

Let $a_0$ be a positive integer and $a_{n + 1} =\sqrt{a_n^2 + 1}$, for all $n \ge 0$. 1) Prove that for all $a_0$ the sequence contains infinitely many integers and infinitely many irrational numbers. 2) Is there an $a_0$ for which $a_{2010}$ is an integer?

2017 District Olympiad, 1

Let $ \left( a_n \right)_{n\ge 1} $ be a sequence of real numbers such that $ a_1>2 $ and $ a_{n+1} =a_1+\frac{2}{a_n} , $ for all natural numbers $ n. $ [b]a)[/b] Show that $ a_{2n-1} +a_{2n} >4 , $ for all natural numbers $ n, $ and $ \lim_{n\to\infty} a_n =2. $ [b]b)[/b] Find the biggest real number $ a $ for which the following inequality is true: $$ \sqrt{x^2+a_1^2} +\sqrt{x^2+a_2^2} +\sqrt{x^2+a_3^2} +\cdots +\sqrt{x^2+a_n^2} > n\sqrt{x^2+a^2}, \quad\forall x\in\mathbb{R} ,\quad\forall n\in\mathbb{N} . $$

2000 Moldova Team Selection Test, 9

The sequence $x_{n}$ is de fined by: $x_{0}=1, x_{1}=0, x_{2}=1,x_{3}=1, x_{n+3}=\frac{(n^2+n+1)(n+1)}{n}x_{n+2}+(n^2+n+1)x_{n+1}-\frac{n+1}{n}x_{n} (n=1,2,3..)$ Prove that all members of the sequence are perfect squares.

2019 Danube Mathematical Competition, 3

Let be a sequence of $ 51 $ natural numbers whose sum is $ 100. $ Show that for any natural number $ 1\le k<100 $ there are some consecutive numbers from this sequence whose sum is $ k $ or $ 100-k. $