This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

1985 IMO Longlists, 22

The positive integers $x_1, \cdots , x_n$, $n \geq 3$, satisfy $x_1 < x_2 <\cdots< x_n < 2x_1$. Set $P = x_1x_2 \cdots x_n.$ Prove that if $p$ is a prime number, $k$ a positive integer, and $P$ is divisible by $pk$, then $\frac{P}{p^k} \geq n!.$

1998 Moldova Team Selection Test, 10

Let $P(x)$ denote the product of all (decimal) digits of a natural number $x$. For any positive integer $x_1$, define the sequence $(x_n)$ recursively by $x_{n+1} = x_n + P(x_n)$. Prove or disprove that the sequence $(x_n)$ is necessarily bounded.

2016 Thailand TSTST, 2

Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.

2011 Germany Team Selection Test, 1

A sequence $x_1, x_2, \ldots$ is defined by $x_1 = 1$ and $x_{2k}=-x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \geq 1.$ Prove that $\forall n \geq 1$ $x_1 + x_2 + \ldots + x_n \geq 0.$ [i]Proposed by Gerhard Wöginger, Austria[/i]

2014 IMO Shortlist, N4

Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) [i]Proposed by Hong Kong[/i]

2024 Bulgarian Autumn Math Competition, 12.1

Tags: sequence , limit , algebra
Let $a_0,a_1,a_2 \dots a_n, \dots$ be an infinite sequence of real numbers, defined by $$a_0 = c$$ $$a_{n+1} = {a_n}^2+\frac{a_n}{2}+c$$ for some real $c > 0$. Find all values of $c$ for which the sequence converges and the limit for those values.

2017 Brazil Undergrad MO, 4

Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers in which $\lim_{n\to\infty} a_n = 0$ such that there is a constant $c >0$ so that for all $n \geq 1$, $|a_{n+1}-a_n| \leq c\cdot a_n^2$. Show that exists $d>0$ with $na_n \geq d, \forall n \geq 1$.

2017 Bundeswettbewerb Mathematik, 1

For which integers $n \geq 4$ is the following procedure possible? Remove one number of the integers $1,2,3,\dots,n+1$ and arrange them in a sequence $a_1,a_2,\dots,a_n$ such that of the $n$ numbers \[ |a_1-a_2|,|a_2-a_3|,\dots,|a_{n-1}-a_n|,|a_n-a_1| \] no two are equal.

2014 India IMO Training Camp, 3

Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that \[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \] Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.

1996 Swedish Mathematical Competition, 3

For every positive integer $n$, we define the function $p_n$ for $x\ge 1$ by $$p_n(x) = \frac12 \left(\left(x+\sqrt{x^2-1}\right)^n+\left(x-\sqrt{x^2-1}\right)^n\right).$$ Prove that $p_n(x) \ge 1$ and that $p_{mn}(x) = p_m(p_n(x))$.

2020 Thailand TSTST, 2

For any positive integer $m \geq 2$, let $p(m)$ be the smallest prime dividing $m$ and $P(m)$ be the largest prime dividing $m$. Let $C$ be a positive integer. Define sequences $\{a_n\}$ and $\{b_n\}$ by $a_0 = b_0 = C$ and, for each positive integer $k$ such that $a_{k-1}\geq 2$, $$a_k=a_{k-1}-\frac{a_{k-1}}{p(a_{k-1})};$$ and, for each positive integer $k$ such that $b_{k-1}\geq 2$, $$b_k=b_{k-1}-\frac{b_{k-1}}{P(b_{k-1})}$$ It is easy to see that both $\{a_n\}$ and $\{b_n\}$ are finite sequences which terminate when they reach the number $1$. Prove that the numbers of terms in the two sequences are always equal.

1956 Moscow Mathematical Olympiad, 342

Given three numbers $x, y, z$ denote the absolute values of the differences of each pair by $x_1,y_1, z_1$. From $x_1, y_1, z_1$ form in the same fashion the numbers $x_2, y_2, z_2$, etc. It is known that $x_n = x,y_n = y, z_n = z$ for some $n$. Find $y$ and $z$ if $x = 1$.

2024 Tuymaada Olympiad, 3

All perfect squares, and all perfect squares multiplied by two, are written in a row in increasing order. let $f(n)$ be the $n$-th number in this sequence. (For instance, $f(1)=1,f(2)=2,f(3)=4,f(4)=8$.) Is there an integer $n$ such that all the numbers \[f(n),f(2n),f(3n),\dots,f(10n^2)\] are perfect squares?

2014 IMO, 1

Let $a_0 < a_1 < a_2 < \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that \[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\] [i]Proposed by Gerhard Wöginger, Austria.[/i]

1991 Swedish Mathematical Competition, 3

Tags: algebra , sequence
The sequence $x_0, x_1, x_2, ...$ is defined by $x_0 = 0$, $x_{k+1} = [(n - \sum_0^k x_i)/2]$. Show that $x_k = 0$ for all sufficiently large $k$ and that the sum of the non-zero terms $x_k$ is $n-1$.

2018 India IMO Training Camp, 3

Let $a_n, b_n$ be sequences of positive reals such that,$$a_{n+1}= a_n + \frac{1}{2b_n}$$ $$b_{n+1}= b_n + \frac{1}{2a_n}$$ for all $n\in\mathbb N$. Prove that, $\text{max}\left(a_{2018}, b_{2018}\right) >44$.

2006 Petru Moroșan-Trident, 2

Study the convergence of the sequence $$ \left( \sum_{k=2}^{n+1} \sqrt[k]{n+1} -\sum_{k=2}^{n} \sqrt[k]{n} \right)_{n\ge 2} , $$ and calculate its limit. [i]Dan Negulescu[/i]

2021 Romania EGMO TST, P1

Let $x>1$ be a real number which is not an integer. For each $n\in\mathbb{N}$, let $a_n=\lfloor x^{n+1}\rfloor - x\lfloor x^n\rfloor$. Prove that the sequence $(a_n)$ is not periodic.

2018 Vietnam National Olympiad, 6

The sequence $(x_n)$ is defined as follows: $$x_0=2,\, x_1=1,\, x_{n+2}=x_{n+1}+x_n$$ for every non-negative integer $n$. a. For each $n\geq 1$, prove that $x_n$ is a prime number only if $n$ is a prime number or $n$ has no odd prime divisors b. Find all non-negative pairs of integers $(m,n)$ such that $x_m|x_n$.

2024 Abelkonkurransen Finale, 2a

Tags: prime , sequence , algebra
Positive integers $a_0<a_1<\dots<a_n$, are to be chosen so that $a_j-a_i$ is not a prime for any $i,j$ with $0 \le i <j \le n$. For each $n \ge 1$, determine the smallest possible value of $a_n$.

1990 French Mathematical Olympiad, Problem 1

Let the sequence $u_n$ be defined by $u_0=0$ and $u_{2n}=u_n$, $u_{2n+1}=1-u_n$ for each $n\in\mathbb N_0$. (a) Calculate $u_{1990}$. (b) Find the number of indices $n\le1990$ for which $u_n=0$. (c) Let $p$ be a natural number and $N=(2^p-1)^2$. Find $u_N$.

1997 IMO Shortlist, 2

Let $ R_1,R_2, \ldots$ be the family of finite sequences of positive integers defined by the following rules: $ R_1 \equal{} (1),$ and if $ R_{n - 1} \equal{} (x_1, \ldots, x_s),$ then \[ R_n \equal{} (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).\] For example, $ R_2 \equal{} (1, 2),$ $ R_3 \equal{} (1, 1, 2, 3),$ $ R_4 \equal{} (1, 1, 1, 2, 1, 2, 3, 4).$ Prove that if $ n > 1,$ then the $ k$th term from the left in $ R_n$ is equal to 1 if and only if the $ k$th term from the right in $ R_n$ is different from 1.

2019 IFYM, Sozopol, 1

We define the sequence $a_n=(2n)^2+1$ for each natural number $n$. We will call one number [i]bad[/i], if there don’t exist natural numbers $a>1$ and $b>1$ such that $a_n=a^2+b^2$. Prove that the natural number $n$ is [i]bad[/i], if and only if $a_n$ is prime.

1982 Czech and Slovak Olympiad III A, 5

Given is a sequence of real numbers $\{a_n\}^{\infty}_{n=1}$ such that $a_n \ne a_m$ for $n\ne m,$ given is a natural number $k$. Construct an injective map $P:\{1,2,\ldots,20k\}\to\mathbb Z^+$ such that the following inequalities hold: $$a_{p(1)}<a_{p(2)}<...<a_{p(10)}$$ $$ a_{p(10)}>a_{p(11)}>...>a_{p(20)}$$ $$a_{p(20)}<a_{p(21)}<...<a_{p(30)}$$ $$...$$ $$a_{p(20k-10)}>a_{p(20k-9)}>...>a_{p(20k)}$$ $$a_{p(10)}>a_{p(30)}>...>a_{p((20k-10))} $$ $$a_{p(1)}<a_{p(20)}<...<a_{p(20k)},$$

1993 Swedish Mathematical Competition, 5

Tags: sequence , geometry
A triangle with sides $a,b,c$ and perimeter $2p$ is given. Is possible, a new triangle with sides $p-a$, $p-b$, $p-c$ is formed. The process is then repeated with the new triangle. For which original triangles can this process be repeated indefinitely?