Found problems: 1239
2014 Cezar Ivănescu, 1
For a sequence $ \left( x_n \right)_{n\ge 1} $ of real numbers that are at least $ 1, $ prove that the series $ \sum_{i=1}^{\infty } \frac{1}{x_i} $ converges if and only if the series $ \sum_{i=1}^{\infty } \frac{1}{1+x_i} $ converges if and only if the series $ \sum_{i=1}^{\infty } \frac{1}{\lfloor x_i\rfloor } $ converges.
1989 IMO, 5
Prove that for each positive integer $ n$ there exist $ n$ consecutive positive integers none of which is an integral power of a prime number.
2018 India IMO Training Camp, 3
Let $a_n, b_n$ be sequences of positive reals such that,$$a_{n+1}= a_n + \frac{1}{2b_n}$$ $$b_{n+1}= b_n + \frac{1}{2a_n}$$ for all $n\in\mathbb N$.
Prove that, $\text{max}\left(a_{2018}, b_{2018}\right) >44$.
2006 Cezar Ivănescu, 3
[b]a)[/b] Let be a sequence $ \left( x_n \right)_{n\ge 1} $ defined by the recursion $ x_{n+1}=\frac{1+x_n}{1-x_n} , $ with $ x_1=2006. $ Calculate $ \lim_{n\to\infty } \frac{x_1+x_2+\cdots +x_n}{n} . $
[b]b)[/b] Prove that if a convergent sequence $ \left( s_n \right)_{n\ge 1} $ verifies $ a_{2^n} =na_n , $ for any natural numbers $ n, $ then $ a_n=0, $ for any natural numbers $ n. $
[i]Cornel Stoicescu[/i]
OIFMAT III 2013, 10
Prove that the sequence defined by:
$$ y_ {n + 1} = \frac {1} {2} (3y_ {n} + \sqrt {5y_ {n} ^ {2} -4}) , \,\, \forall n \ge 0$$ with $ y_ {0} = 1$ consists only of integers.
1980 IMO Shortlist, 19
Find the greatest natural number $n$ such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}< a_{2}< \ldots < a_{n-1}$ satisfying the following equations for $i =1,2,\ldots,n-1$: \[x_{1}x_{2}\ldots x_{n}= 1980 \quad \text{and}\quad x_{i}+\frac{1980}{x_{i}}= a_{i}.\]
2001 Miklós Schweitzer, 2
Let $\alpha \leq -2$ be an integer. Prove that for every pair $(\beta_0, \beta_1)$ of integers there exists a uniquely determined sequence $0\leq q_0, \ldots, q_k<\alpha ^ 2 - \alpha$ of integers, such that $q_k\neq 0$ if $(\beta_0, \beta 1)\neq (0,0)$ and
$$\beta_i=\sum_{j=0}^k q_j(\alpha - i)^j,\text{ for }i=0,1$$
1954 Moscow Mathematical Olympiad, 282
Given a sequence of numbers $a_1, a_2, ..., a_{15}$, one can always construct a new sequence $b_1,b_2, ..., b_{15}$, where $b_i$ is equal to the number of terms in the sequence $\{a_k\}^{15}_{k=1}$ less than $a_i$ ($i = 1, 2,..., 15$). Is there a sequence $\{a_k\}^{15}_{k=1}$ for which the sequence $\{b_k\}^{15}_{k=1}$ is $$1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13 \,?$$
2025 Bulgarian Winter Tournament, 12.3
Determine all functions $f: \mathbb{Z}_{\geq 2025} \to \mathbb{Z}_{>0}$ such that $mn+1$ divides $f(m)f(n) + 1$ for any integers $m,n \geq 2025$ and there exists a polynomial $P$ with integer coefficients, such that $f(n) \leq P(n)$ for all $n\geq 2025$.
2016 Lusophon Mathematical Olympiad, 5
A numerical sequence is called lusophone if it satisfies the following three conditions:
i) The first term of the sequence is number $1$.
ii) To obtain the next term of the sequence we can multiply the previous term by a positive prime number ($2,3,5,7,11, ...$) or add $1$.
(iii) The last term of the sequence is the number $2016$.
For example: $1\overset{{\times 11}}{\to}11 \overset{{\times 61}}{\to} 671 \overset{{+1}}{\to}672 \overset{{\times 3}}{\to}2016$
How many Lusophone sequences exist in which (as in the example above) the add $1$ operation was used exactly once and not multiplied twice by the same prime number?
1983 IMO Longlists, 33
Let $F(n)$ be the set of polynomials $P(x) = a_0+a_1x+\cdots+a_nx^n$, with $a_0, a_1, . . . , a_n \in \mathbb R$ and $0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}.$ Prove that if $f \in F(m)$ and $g \in F(n)$, then $fg \in F(m + n).$
2018 Korea National Olympiad, 4
Find all real values of $K$ which satisfies the following.
Let there be a sequence of real numbers $\{a_n\}$ which satisfies the following for all positive integers $n$.
(i). $0 < a_n < n^K$.
(ii). $a_1 + a_2 + \cdots + a_n < \sqrt{n}$.
Then, there exists a positive integer $N$ such that for all integers $n>N$, $$a^{2018}_1 + a^{2018}_2 + \cdots +a^{2018}_n < \frac{n}{2018}$$
2002 German National Olympiad, 4
Given a positive real number $a_1$, we recursively define $a_{n+1} = 1+a_1 a_2 \cdots \cdot a_n.$ Furthermore, let
$$b_n = \frac{1}{a_1 } + \frac{1}{a_2 } +\cdots + \frac{1}{a_n }.$$
Prove that $b_n < \frac{2}{a_1}$ for all positive integers $n$ and that this is the smallest possible bound.
2023 Indonesia TST, 1
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that
$$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$
for all positive integers $n$. Show that $a_{2022}\leq 1$.
2019 Finnish National High School Mathematics Comp, 4
Define a sequence $ a_n = n^n + (n - 1)^{n+1}$ when $n$ is a positive integer.
Define all those positive integer $m$ , for which this sequence of numbers is eventually periodic modulo $m$, e.g. there are such positive integers $K$ and $s$ such that $a_k \equiv a_{k+s}$ ($mod \,m$), where $k$ is an integer with $k \ge K$.
Mathematical Minds 2023, P7
Does there exist an increasing sequence of positive integers for which any large enough integer can be expressed uniquely as the sum of two (possibly equal) terms of the sequence?
[i]Proposed by Vlad Spătaru and David Anghel[/i]
2013 Singapore MO Open, 1
Let $a_1$, $a_2$, ... be a sequence of integers defined recursively by $a_1=2013$ and for $n \ge 1$, $a_{n+1}$ is the sum of the $2013$-th powers of the digits of $a_n$. Do there exist distinct positive integers $i$, $j$ such that $a_i=a_j$?
2022 Thailand Mathematical Olympiad, 7
Let $d \geq 2$ be a positive integer. Define the sequence $a_1,a_2,\dots$ by
$$a_1=1 \ \text{and} \ a_{n+1}=a_n^d+1 \ \text{for all }n\geq 1.$$
Determine all pairs of positive integers $(p, q)$ such that $a_p$ divides $a_q$.
2018 Brazil National Olympiad, 5
Consider the sequence in which $a_1 = 1$ and $a_n$ is obtained by juxtaposing the decimal representation of $n$ at the end of the decimal representation of $a_{n-1}$. That is, $a_1 = 1$, $a_2 = 12$, $a_3 = 123$, $\dots$ , $a_9 = 123456789$, $a_{10} = 12345678910$ and so on. Prove that infinitely many numbers of this sequence are multiples of $7$.
2022 USA TSTST, 9
Let $k>1$ be a fixed positive integer. Prove that if $n$ is a sufficiently large positive integer, there exists a sequence of integers with the following properties:
[list=disc]
[*]Each element of the sequence is between $1$ and $n$, inclusive.
[*]For any two different contiguous subsequence of the sequence with length between $2$ and $k$ inclusive, the multisets of values in those two subsequences is not the same.
[*]The sequence has length at least $0.499n^2$
[/list]
2022 Olimphíada, 2
We say that a real $a\geq-1$ is philosophical if there exists a sequence $\epsilon_1,\epsilon_2,\dots$, with $\epsilon_i \in\{-1,1\}$ for all $i\geq1$, such that the sequence $a_1,a_2,a_3,\dots$, with $a_1=a$, satisfies
$$a_{n+1}=\epsilon_{n}\sqrt{a_{n}+1},\forall n\geq1$$
and is periodic. Find all philosophical numbers.
1996 Czech And Slovak Olympiad IIIA, 1
A sequence $(G_n)_{n=0}^{\infty}$ satisfies $G(0) = 0$ and $G(n) = n-G(G(n-1))$ for each $n \in N$. Show that
(a) $G(k) \ge G(k -1)$ for every $k \in N$;
(b) there is no integer $k$ for which $G(k -1) = G(k) = G(k +1)$.
2005 Bosnia and Herzegovina Junior BMO TST, 3
Rational numbers are written in the following sequence: $\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4}, . . .$
In which position of this sequence is $\frac{2005}{2004}$ ?
2020 European Mathematical Cup, 2
A positive integer $k\geqslant 3$ is called[i] fibby[/i] if there exists a positive integer $n$ and positive integers $d_1 < d_2 < \ldots < d_k$ with the following properties: \\ $\bullet$ $d_{j+2}=d_{j+1}+d_j$ for every $j$ satisfying $1\leqslant j \leqslant k-2$, \\ $\bullet$ $d_1, d_2, \ldots, d_k$ are divisors of $n$, \\ $\bullet$ any other divisor of $n$ is either less than $d_1$ or greater than $d_k$.
Find all fibby numbers. \\ \\ [i]Proposed by Ivan Novak.[/i]
2013 Saudi Arabia BMO TST, 2
Define Fibonacci sequence $\{F\}_{n=0}^{\infty}$ as $F_0 = 0, F_1 = 1$ and $F_{n+1} = F_n +F_{n-1}$ for every integer $n > 1$. Determine all quadruples $(a, b, c,n)$ of positive integers with a $< b < c$ such that each of $a, b,c,a + n, b + n,c + 2n$ is a term of the Fibonacci sequence.