Found problems: 1239
2009 Kyiv Mathematical Festival, 5
a) Suppose that a sequence of numbers $x_1,x_2,x_3,...$ satisfies the inequality $x_n-2x_{n+1}+x_{n+2} \le 0$ for any $n$ . Moreover $x_o=1,x_{20}=9,x_{200}=6$. What is the maximal value of $x_{2009}$ can be?
b) Suppose that a sequence of numbers $x_1,x_2,x_3,...$ satisfies the inequality $2x_n-3x_{n+1}+x_{n+2} \le 0$ for any $n$. Moreover $x_o=1,x_1=2,x_3=1$. Can $x_{2009}$ be greater then $0,678$ ?
2000 Saint Petersburg Mathematical Olympiad, 10.1
Sequences $x_1,x_2,\dots,$ and $y_1,y_2,\dots,$ are defined with $x_1=\dfrac{1}{8}$, $y_1=\dfrac{1}{10}$ and $x_{n+1}=x_n+x_n^2$, $y_{n+1}=y_n+y_n^2$. Prove that $x_m\neq y_n$ for all $m,n\in\mathbb{Z}^{+}$.
[I]Proposed by A. Golovanov[/i]
2022 Macedonian Mathematical Olympiad, Problem 1
Let $(x_n)_{n=1}^\infty$ be a sequence defined recursively with: $x_1=2$ and $x_{n+1}=\frac{x_n(x_n+n)}{n+1}$ for all $n \ge 1$. Prove that $$n(n+1) >\frac{(x_1+x_2+ \ldots +x_n)^2}{x_{n+1}}.$$
[i]Proposed by Nikola Velov[/i]
2015 South East Mathematical Olympiad, 1
Suppose that the sequence $\{a_n\}$ satisfy $a_1=1$ and $a_{2k}=a_{2k-1}+a_k, \quad a_{2k+1}=a_{2k}$ for $k=1,2, \ldots$ \\Prove that $a_{2^n}< 2^{\frac{n^2}{2}}$ for any integer $n \geq 3$.
2020 June Advanced Contest, 4
Let \(c\) be a positive real number. Alice wishes to pick an integer \(n\) and a sequence \(a_1\), \(a_2\), \(\ldots\) of distinct positive integers such that \(a_{i} \leq ci\) for all positive integers \(i\) and \[n, \qquad n + a_1, \qquad n + a_1 - a_2, \qquad n + a_1 - a_2 + a_3, \qquad \cdots\] is a sequence of distinct nonnegative numbers. Find all \(c\) such that Alice can fulfil her wish.
2004 Nicolae Coculescu, 1
Calculate $ \lim_{n\to\infty } \left( e^{1+1/2+1/3+\cdots +1/n+1/(n+1)} -e^{1+1/2+1/3+\cdots +1/n} \right) . $
2020 Tournament Of Towns, 4
For an infinite sequence $a_1, a_2,. . .$ denote as it's [i]first derivative[/i] is the sequence $a'_n= a_{n + 1} - a_n$ (where $n = 1, 2,..$.), and her $k$- th derivative as the first derivative of its $(k-1)$-th derivative ($k = 2, 3,...$). We call a sequence [i]good[/i] if it and all its derivatives consist of positive numbers.
Prove that if $a_1, a_2,. . .$ and $b_1, b_2,. . .$ are good sequences, then sequence $a_1\cdot b_1, a_2 \cdot b_2,..$ is also a good one.
R. Salimov
1992 Putnam, B3
For any pair $(x,y)$ of real numbers, a sequence $(a_{n}(x,y))$ is defined as follows:
$$a_{0}(x,y)=x, \;\;\;\; a_{n+1}(x,y) =\frac{a_{n}(x,y)^{2} +y^2 }{2} \;\, \text{for}\, n\geq 0$$
Find the area of the region $\{(x,y)\in \mathbb{R}^{2} \, |\, (a_{n}(x,y)) \,\, \text{converges} \}$.
2005 AIME Problems, 11
Let $m$ be a positive integer, and let $a_0, a_1,\ldots,a_m$ be a sequence of reals such that $a_0=37$, $a_1=72$, $a_m=0$, and \[a_{k+1}=a_{k-1}-\frac{3}{a_k}\] for $k=1,2, \dots, m-1$. Find $m$.
India EGMO 2023 TST, 5
Let $k$ be a positive integer. A sequence of integers $a_1, a_2, \cdots$ is called $k$-pop if the following holds: for every $n \in \mathbb{N}$, $a_n$ is equal to the number of distinct elements in the set $\{a_1, \cdots , a_{n+k} \}$. Determine, as a function of $k$, how many $k$-pop sequences there are.
[i]Proposed by Sutanay Bhattacharya[/i]
VII Soros Olympiad 2000 - 01, 11.7
Consider all possible functions defined for $x = 1, 2, ..., M$ and taking values $y = 1, 2, ..., n$. We denote the set of such functions by $T.$ By $T_0$ we denote the subset of $T$ consisting of functions whose value changes exactly by $ 1$ (in one direction or another) when the argument changes by $1$. Prove that if $M\ge 2n-4$, then among the functions from of the set $T$, there is a function that coincides at least at one point with any function from $T_0$. Specify at least one such function. Prove that if $M <2n-4$, then there is no such function.
2002 Croatia National Olympiad, Problem 4
Let $(a_n)_{n\in\mathbb N}$ be an increasing sequence of positive integers. A term $a_k$ in the sequence is said to be good if it a sum of some other terms (not necessarily distinct). Prove that all terms of the sequence, apart from finitely many of them, are good.
1999 Brazil Team Selection Test, Problem 3
A sequence $a_n$ is defined by
$$a_0=0,\qquad a_1=3;$$$$a_n=8a_{n-1}+9a_{n-2}+16\text{ for }n\ge2.$$Find the least positive integer $h$ such that $a_{n+h}-a_n$ is divisible by $1999$ for all $n\ge0$.
2008 SEEMOUS, Problem 2
Let $P_0,P_1,P_2,\ldots$ be a sequence of convex polygons such that, for each $k\ge0$, the vertices of $P_{k+1}$ are the midpoints of all sides of $P_k$. Prove that there exists a unique point lying inside all these polygons.
2004 Croatia National Olympiad, Problem 4
The sequence $1,2,3,4,0,9,6,9,4,8,7,\ldots$ is formed so that each term, starting from the fifth, is the units digit of the sum of the previous four.
(a) Do the digits $2,0,0,4$ occur in the sequence in this order?
(b) Will the initial digits $1,2,3,4$ ever occur again in this order?
1988 All Soviet Union Mathematical Olympiad, 485
The sequence of integers an is given by $a_0 = 0, a_n = p(a_n-1)$, where $p(x)$ is a polynomial whose coefficients are all positive integers. Show that for any two positive integers $m, k$ with greatest common divisor $d$, the greatest common divisor of $a_m$ and $a_k$ is $a_d$.
2018 IMO Shortlist, A4
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
2015 Estonia Team Selection Test, 12
Call an $n$-tuple $(a_1, . . . , a_n)$ [i]occasionally periodic [/i] if there exist a nonnegative integer $i$ and a positive integer $p$ satisfying $i + 2p \le n$ and $a_{i+j} = a_{i+p+j}$ for every $j = 1, 2, . . . , p$. Let $k$ be a positive integer. Find the least positive integer $n$ for which there exists an $n$-tuple $(a_1, . . . , a_n)$ with elements from set $\{1, 2, . . . , k\}$, which is not occasionally periodic but whose arbitrary extension $(a_1, . . . , a_n, a_{n+1})$ is occasionally periodic for any $a_{n+1} \in \{1, 2, . . . , k\}$.
2018 Bosnia And Herzegovina - Regional Olympiad, 4
We observe that number $10001=73\cdot137$ is not prime. Show that every member of infinite sequence $10001, 100010001, 1000100010001,...$ is not prime
1975 IMO, 2
Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$
1971 IMO, 3
Prove that we can find an infinite set of positive integers of the from $2^n-3$ (where $n$ is a positive integer) every pair of which are relatively prime.
2019 Jozsef Wildt International Math Competition, W. 43
Consider the sequence of polynomials $P_0(x) = 2$, $P_1(x) = x$ and $P_n(x) = xP_{n-1}(x) - P_{n-2}(x)$ for $n \geq 2$. Let $x_n$ be the greatest zero of $P_n$ in the the interval $|x| \leq 2$. Show that $$\lim \limits_{n \to \infty}n^2\left(4-2\pi +n^2\int \limits_{x_n}^2P_n(x)dx\right)=2\pi - 4-\frac{\pi^3}{12}$$
2019 Nigerian Senior MO Round 4, 4
We consider the real sequence ($x_n$) defined by $x_0=0, x_1=1$ and $x_{n+2}=3x_{n+1}-2 x_{n}$ for $n=0,1,2,...$
We define the sequence ($y_n$) by $y_n=x^2_n+2^{n+2}$ for every nonnegative integer $n$.
Prove that for every $n>0, y_n$ is the square of an odd integer.
2005 Germany Team Selection Test, 1
Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals.
Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded?
[i]Proposed by Mihai Bălună, Romania[/i]
2019 Tuymaada Olympiad, 1
In a sequence $a_1, a_2, ..$ of real numbers the product $a_1a_2$ is negative, and to define $a_n$ for $n > 2$ one pair $(i, j)$ is chosen among all the pairs $(i, j), 1 \le i < j < n$, not chosen before, so that $a_i +a_j$ has minimum absolute value, and then $a_n$ is set equal to $a_i + a_j$ . Prove that $|a_i| < 1$ for some $i$.