This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 295

2019 Taiwan TST Round 2, 1

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2016 Indonesia TST, 3

Let $\{E_1, E_2, \dots, E_m\}$ be a collection of sets such that $E_i \subseteq X = \{1, 2, \dots, 100\}$, $E_i \neq X$, $i = 1, 2, \dots, m$. It is known that every two elements of $X$ is contained together in exactly one $E_i$ for some $i$. Determine the minimum value of $m$.

2012 IMAR Test, 1

Let $K$ be a convex planar set, symmetric about a point $O$, and let $X, Y , Z$ be three points in $K$. Show that $K$ contains the head of one of the vectors $\overrightarrow{OX} \pm \overrightarrow{OY} , \overrightarrow{OX} \pm \overrightarrow{OZ}, \overrightarrow{OY} \pm \overrightarrow{OZ}$.

2024 Romanian Master of Mathematics, 3

Given a positive integer $n$, a collection $\mathcal{S}$ of $n-2$ unordered triples of integers in $\{1,2,\ldots,n\}$ is [i]$n$-admissible[/i] if for each $1 \leq k \leq n - 2$ and each choice of $k$ distinct $A_1, A_2, \ldots, A_k \in \mathcal{S}$ we have $$ \left|A_1 \cup A_2 \cup \cdots A_k \right| \geq k+2.$$ Is it true that for all $n > 3$ and for each $n$-admissible collection $\mathcal{S}$, there exist pairwise distinct points $P_1, \ldots , P_n$ in the plane such that the angles of the triangle $P_iP_jP_k$ are all less than $61^{\circ}$ for any triple $\{i, j, k\}$ in $\mathcal{S}$? [i]Ivan Frolov, Russia[/i]

2011 IMO, 1

Tags: number theory , set
Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 +a_2 +a_3 +a_4$ by $s_A$. Let $n_A$ denote the number of pairs $(i, j)$ with $1 \leq i < j \leq 4$ for which $a_i +a_j$ divides $s_A$. Find all sets $A$ of four distinct positive integers which achieve the largest possible value of $n_A$. [i]Proposed by Fernando Campos, Mexico[/i]

2023 Turkey MO (2nd round), 5

Is it possible that a set consisting of $23$ real numbers has a property that the number of the nonempty subsets whose product of the elements is rational number is exactly $2422$?

2016 Spain Mathematical Olympiad, 5

From all possible permutations from $(a_1,a_2,...,a_n)$ from the set $\{1,2,..,n\}$, $n\geq 1$, consider the sets that satisfies the $2(a_1+a_2+...+a_m)$ is divisible by $m$, for every $m=1,2,...,n$. Find the total number of permutations.

2020 Thailand TSTST, 4

Does there exist a set $S$ of positive integers satisfying the following conditions? $\text{(i)}$ $S$ contains $2020$ distinct elements; $\text{(ii)}$ the number of distinct primes in the set $\{\gcd(a, b) : a, b \in S, a \neq b\}$ is exactly $2019$; and $\text{(iii)}$ for any subset $A$ of $S$ containing at least two elements, $\sum\limits_{a,b\in A; a<b} ab$ is not a prime power.

2016 Korea Summer Program Practice Test, 5

Tags: set , combinatorics
Find the maximal possible $n$, where $A_1, \dots, A_n \subseteq \{1, 2, \dots, 2016\}$ satisfy the following properties. - For each $1 \le i \le n$, $\lvert A_i \rvert = 4$. - For each $1 \le i < j \le n$, $\lvert A_i \cap A_j \rvert$ is even.

2009 Jozsef Wildt International Math Competition, W. 11

Tags: set , number theory
Find all real numbers $m$ such that $$\frac{1-m}{2m} \in \{x\ |\ m^2x^4+3mx^3+2x^2+x=1\ \forall \ x\in \mathbb{R} \}$$

1980 All Soviet Union Mathematical Olympiad, 300

The $A$ set consists of integers only. Its minimal element is $1$ and its maximal element is $100$. Every element of $A$ except $1$ equals to the sum of two (may be equal) numbers being contained in $A$. What is the least possible number of elements in $A$?

2015 Bosnia Herzegovina Team Selection Test, 4

Let $X$ be a set which consists from $8$ consecutive positive integers. Set $X$ is divided on two disjoint subsets $A$ and $B$ with equal number of elements. If sum of squares of elements from set $A$ is equal to sum of squares of elements from set $B$, prove that sum of elements of set $A$ is equal to sum of elements of set $B$.

Russian TST 2019, P2

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2018 Brazil Undergrad MO, 4

Tags: set
Consider the property that each a element of a group $G$ satisfies $a ^ 2 = e$, where e is the identity element of the group. Which of the following statements is not always valid for a group $G$ with this property? (a) $G$ is commutative (b) $G$ has infinite or even order (c) $G$ is Noetherian (d) $G$ is vector space over $\mathbb{Z}_2$

2011 Philippine MO, 1

Tags: set , combinatorics
Find all nonempty finite sets $X$ of real numbers such that for all $x\in X$, $x+|x| \in X$.

1994 Korea National Olympiad, Problem 2

Given a set $S \subset N$ and a positive integer n, let $S\oplus \{n\} = \{s+n / s \in S\}$. The sequence $S_k$ of sets is defined inductively as follows: $S_1 = {1}$, $S_k=(S_{k-1} \oplus \{k\}) \cup \{2k-1\}$ for $k = 2,3,4, ...$ (a) Determine $N - \cup _{k=1}^{\infty} S_k$. (b) Find all $n$ for which $1994 \in S_n$.

2015 Dutch Mathematical Olympiad, 1

We make groups of numbers. Each group consists of [i]fi ve[/i] distinct numbers. A number may occur in multiple groups. For any two groups, there are exactly four numbers that occur in both groups. (a) Determine whether it is possible to make $2015$ groups. (b) If all groups together must contain exactly [i]six [/i] distinct numbers, what is the greatest number of groups that you can make? (c) If all groups together must contain exactly [i]seven [/i] distinct numbers, what is the greatest number of groups that you can make?

1974 Czech and Slovak Olympiad III A, 4

Let $\mathcal M$ be the set of all polynomial functions $f$ of degree at most 3 such that \[\forall x\in[-1,1]:\ |f(x)|\le 1.\] Denote $a$ the (possibly zero) coefficient of $f$ at $x^3.$ Show that there is a positive number $k$ such that \[\forall f\in\mathcal M:\ |a|\le k\] and find the least $k$ with this property.

2015 Bosnia And Herzegovina - Regional Olympiad, 4

Tags: set , combinatorics
Alice and Mary were searching attic and found scale and box with weights. When they sorted weights by mass, they found out there exist $5$ different groups of weights. Playing with the scale and weights, they discovered that if they put any two weights on the left side of scale, they can find other two weights and put on to the right side of scale so scale is in balance. Find the minimal number of weights in the box

2019 China Western Mathematical Olympiad, 8

Tags: combinatorics , set
We call a set $S$ a [i]good[/i] set if $S=\{x,2x,3x\}(x\neq 0).$ For a given integer $n(n\geq 3),$ determine the largest possible number of the [i]good[/i] subsets of a set containing $n$ positive integers.

2015 Mathematical Talent Reward Programme, MCQ: P 11

Tags: algebra , set
$S=\{1,2, \ldots, 6\} .$ Then find out the number of unordered pairs of $(A, B)$ such that $A, B \subseteq S$ and $A \cap B=\phi$ [list=1] [*] 360 [*] 364 [*] 365 [*] 366 [/list]

2018 Brazil Team Selection Test, 1

Let $n \ge 1$ be an integer. For each subset $S \subset \{1, 2, \ldots , 3n\}$, let $f(S)$ be the sum of the elements of $S$, with $f(\emptyset) = 0$. Determine, as a function of $n$, the sum $$\sum_{\mathclap{\substack{S \subset \{1,2,\ldots,3n\}\\ 3 \mid f(S)}}} f(S)$$ where $S$ runs through all subsets of $\{1, 2,\ldots, 3n\}$ such that $f(S)$ is a multiple of $3$.

2007 Dutch Mathematical Olympiad, 2

Is it possible to partition the set $A = \{1, 2, 3, ... , 32, 33\}$ into eleven subsets that contain three integers each, such that for every one of these eleven subsets, one of the integers is equal to the sum of the other two? If so, give such a partition, if not, prove that such a partition cannot exist.

2021 Science ON all problems, 3

Consider positive integers $a<b$ and the set $C\subset\{a,a+1,a+2,\dots ,b-2,b-1,b\}$. Suppose $C$ has more than $\frac{b-a+1}{2}$ elements. Prove that there are two elements $x,y\in C$ that satisfy $x+y=a+b$. [i] (From "Radu Păun" contest, Radu Miculescu)[/i]

2014 Contests, 4

Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when: a) $n=2014$ b) $n=2015 $ c) $n=2018$