This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 295

2021 Junior Balkаn Mathematical Olympiad, 2

For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$. Find the largest possible value of $T_A$.

2016 Switzerland Team Selection Test, Problem 1

Let $n$ be a natural number. Two numbers are called "unsociable" if their greatest common divisor is $1$. The numbers $\{1,2,...,2n\}$ are partitioned into $n$ pairs. What is the minimum number of "unsociable" pairs that are formed?

2020-2021 Winter SDPC, #7

Tags: algebra , set
Show that there is some rational number in the interval $(0,1)$ that can be expressed as a sum of $2021$ reciprocals of positive integers, but cannot be expressed as a sum of $2020$ reciprocals of positive integers.

2017 AMC 12/AHSME, 9

Tags: set
Let $S$ be the set of points $(x,y)$ in the coordinate plane such that two of the three quantities $3$, $x+2$, and $y-4$ are equal and the third of the three quantities is no greater than this common value. Which of the following is a correct description of $S$? $\textbf{(A) } \text{a single point} \qquad \textbf{(B) } \text{two intersecting lines} \\ \\ \textbf{(C) } \text{three lines whose pairwise intersections are three distinct points} \\ \\ \textbf{(D) } \text{a triangle} \qquad \textbf{(E) } \text{three rays with a common endpoint}$

1997 Bosnia and Herzegovina Team Selection Test, 5

$a)$ Prove that for all positive integers $n$ exists a set $M_n$ of positive integers with exactly $n$ elements and: $i)$ Arithmetic mean of arbitrary non-empty subset of $M_n$ is integer $ii)$ Geometric mean of arbitrary non-empty subset of $M_n$ is integer $iii)$ Both arithmetic mean and geometry mean of arbitrary non-empty subset of $M_n$ is integer $b)$ Does there exist infinite set $M$ of positive integers such that arithmetic mean of arbitrary non-empty subset of $M$ is integer

2017 China Team Selection Test, 3

Tags: set , combinatorics
Let $X$ be a set of $100$ elements. Find the smallest possible $n$ satisfying the following condition: Given a sequence of $n$ subsets of $X$, $A_1,A_2,\ldots,A_n$, there exists $1 \leq i < j < k \leq n$ such that $$A_i \subseteq A_j \subseteq A_k \text{ or } A_i \supseteq A_j \supseteq A_k.$$

2019 India PRMO, 21

Consider the set $E = \{5, 6, 7, 8, 9\}$. For any partition ${A, B}$ of $E$, with both $A$ and $B$ non-empty, consider the number obtained by adding the product of elements of $A$ to the product of elements of $B$. Let $N$ be the largest prime number amonh these numbers. Find the sum of the digits of $N$.

2014 Korea Junior Math Olympiad, 8

Tags: combinatorics , set
Let there be $n$ students and $m$ clubs. The students joined the clubs so that the following is true: - For all students $x$, you can choose some clubs such that $x$ is the only student who joined all of the chosen clubs. Let the number of clubs each student joined be $a_1,a_2,...,a_m$. Prove that $$a_1!(m - a_1)! + a_2!(m - a_2)! + ... + a_n!(m -a_n)! \le m!$$

2016 Dutch IMO TST, 4

Tags: combinatorics , set
Determine the number of sets $A = \{a_1,a_2,...,a_{1000}\}$ of positive integers satisfying $a_1 < a_2 <...< a_{1000} \le 2014$, for which we have that the set $S = \{a_i + a_j | 1 \le i, j \le 1000$ with $i + j \in A\}$ is a subset of $A$.

2019 Belarusian National Olympiad, 9.4

The sum of several (not necessarily different) positive integers not exceeding $10$ is equal to $S$. Find all possible values of $S$ such that these numbers can always be partitioned into two groups with the sum of the numbers in each group not exceeding $70$. [i](I. Voronovich)[/i]

1989 Romania Team Selection Test, 4

A family of finite sets $\left\{ A_{1},A_{2},.......,A_{m}\right\} $is called [i]equipartitionable [/i] if there is a function $\varphi:\cup_{i=1}^{m}$$\rightarrow\left\{ -1,1\right\} $ such that $\sum_{x\in A_{i}}\varphi\left(x\right)=0$ for every $i=1,.....,m.$ Let $f\left(n\right)$ denote the smallest possible number of $n$-element sets which form a non-equipartitionable family. Prove that a) $f(4k +2) = 3$ for each nonnegative integer $k$, b) $f\left(2n\right)\leq1+m d\left(n\right)$, where $m d\left(n\right)$ denotes the least positive non-divisor of $n.$

1983 Austrian-Polish Competition, 4

The set $N$ has been partitioned into two sets A and $B$. Show that for every $n \in N$ there exist distinct integers $a, b > n$ such that $a, b, a + b$ either all belong to $A$ or all belong to $B$.

2009 Serbia National Math Olympiad, 3

Determine the largest positive integer $n$ for which there exist pairwise different sets $\mathbb{S}_1 , ..., \mathbb{S}_n$ with the following properties: $1$) $|\mathbb{S}_i \cup \mathbb{S}_j | \leq 2004$ for any two indices $1 \leq i, j\leq n$, and $2$) $\mathbb{S}_i \cup \mathbb{S}_j \cup \mathbb{S}_k = \{ 1,2,...,2008 \}$ for any $1 \leq i < j < k \leq n$ [i]Proposed by Ivan Matic[/i]

2023 China Team Selection Test, P14

Tags: inequalities , set
For any nonempty, finite set $B$ and real $x$, define $$d_B(x) = \min_{b\in B} |x-b|$$ (1) Given positive integer $m$. Find the smallest real number $\lambda$ (possibly depending on $m$) such that for any positive integer $n$ and any reals $x_1,\cdots,x_n \in [0,1]$, there exists an $m$-element set $B$ of real numbers satisfying $$d_B(x_1)+\cdots+d_B(x_n) \le \lambda n$$ (2) Given positive integer $m$ and positive real $\epsilon$. Prove that there exists a positive integer $n$ and nonnegative reals $x_1,\cdots,x_n$, satisfying for any $m$-element set $B$ of real numbers, we have $$d_B(x_1)+\cdots+d_B(x_n) > (1-\epsilon)(x_1+\cdots+x_n)$$

2022 Iran MO (3rd Round), 3

Tags: combinatorics , union , set
We have many $\text{three-element}$ subsets of a $1000\text{-element}$ set. We know that the union of every $5$ of them has at least $12$ elements. Find the most possible value for the number of these subsets.

2004 Korea Junior Math Olympiad, 2

For $n\geq3$ define $S_n=\{1, 2, ..., n\}$. $A_1, A_{2}, ..., A_{n}$ are given subsets of $S_n$, each having an even number of elements. Prove that there exists a set $\{i_1, i_2, ..., i_t\}$, a nonempty subset of $S_n$ such that $$A_{i_1} \Delta A_{i_2} \Delta \ldots \Delta A_{i_t}=\emptyset$$ (For two sets $A, B$, we define $\Delta$ as $A \Delta B=(A\cup B)-(A\cap B)$)

1995 Austrian-Polish Competition, 2

Let $X= \{A_1, A_2, A_3, A_4\}$ be a set of four distinct points in the plane. Show that there exists a subset $Y$ of $X$ with the property that there is no (closed) disk $K$ such that $K\cap X = Y$.

2017 AMC 10, 12

Tags: set
Let $S$ be the set of points $(x,y)$ in the coordinate plane such that two of the three quantities $3$, $x+2$, and $y-4$ are equal and the third of the three quantities is no greater than this common value. Which of the following is a correct description of $S$? $\textbf{(A) } \text{a single point} \qquad \textbf{(B) } \text{two intersecting lines} \\ \\ \textbf{(C) } \text{three lines whose pairwise intersections are three distinct points} \\ \\ \textbf{(D) } \text{a triangle} \qquad \textbf{(E) } \text{three rays with a common endpoint}$

2004 Regional Olympiad - Republic of Srpska, 4

Set $S=\{1,2,...,n\}$ is firstly divided on $m$ disjoint nonempty subsets, and then on $m^2$ disjoint nonempty subsets. Prove that some $m$ elements of set $S$ were after first division in same set, and after the second division were in $m$ different sets

2020 Canadian Mathematical Olympiad Qualification, 2

Given a set $S$, of integers, an [i]optimal partition[/i] of S into sets T, U is a partition which minimizes the value $|t - u|$, where $t$ and $u$ are the sum of the elements of $T$ and U respectively. Let $P$ be a set of distinct positive integers such that the sum of the elements of $P$ is $2k$ for a positive integer $k$, and no subset of $P$ sums to $k$. Either show that there exists such a $P$ with at least $2020$ different optimal partitions, or show that such a $P$ does not exist.

1987 China Team Selection Test, 1

a.) For all positive integer $k$ find the smallest positive integer $f(k)$ such that $5$ sets $s_1,s_2, \ldots , s_5$ exist satisfying: [b]i.[/b] each has $k$ elements; [b]ii.[/b] $s_i$ and $s_{i+1}$ are disjoint for $i=1,2,...,5$ ($s_6=s_1$) [b]iii.[/b] the union of the $5$ sets has exactly $f(k)$ elements. b.) Generalisation: Consider $n \geq 3$ sets instead of $5$.

2014 Rioplatense Mathematical Olympiad, Level 3, 1

Let $n \ge 3$ be a positive integer. Determine, in terms of $n$, how many triples of sets $(A,B,C)$ satisfy the conditions: $\bullet$ $A, B$ and $C$ are pairwise disjoint , that is, $A \cap B = A \cap C= B \cap C= \emptyset$. $\bullet$ $A \cup B \cup C= \{ 1 , 2 , ... , n \}$. $\bullet$ The sum of the elements of $A$, the sum of the elements of $B$ and the sum of the elements of $C$ leave the same remainder when divided by $3$. Note: One or more of the sets may be empty.

OMMC POTM, 2022 8

The positive integers are partitioned into two infinite sets so that the sum of any $2023$ distinct integers in one set is also in that set. Prove that one set contains all the odd positive integers, and one set contains all the even positive integers. [i]Proposed by Evan Chang (squareman), USA[/i]

2013 IFYM, Sozopol, 8

The irrational numbers $\alpha ,\beta ,\gamma ,\delta$ are such that $\forall$ $n\in \mathbb{N}$ : $[n\alpha ].[n\beta ]=[n\gamma ].[n\delta ]$. Is it true that the sets $\{ \alpha ,\beta \}$ and $\{ \gamma ,\delta \}$ are equal?

1980 All Soviet Union Mathematical Olympiad, 300

The $A$ set consists of integers only. Its minimal element is $1$ and its maximal element is $100$. Every element of $A$ except $1$ equals to the sum of two (may be equal) numbers being contained in $A$. What is the least possible number of elements in $A$?