This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 175

2014 Contests, 4

Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when: a) $n=2014$ b) $n=2015 $ c) $n=2018$

1972 Czech and Slovak Olympiad III A, 5

Determine how many unordered pairs $\{A,B\}$ is there such that $A,B\subseteq\{1,\ldots,n\}$ and $A\cap B=\emptyset.$

2017 China Team Selection Test, 3

Suppose $S=\{1,2,3,...,2017\}$,for every subset $A$ of $S$,define a real number $f(A)\geq 0$ such that: $(1)$ For any $A,B\subset S$,$f(A\cup B)+f(A\cap B)\leq f(A)+f(B)$; $(2)$ For any $A\subset B\subset S$, $f(A)\leq f(B)$; $(3)$ For any $k,j\in S$,$$f(\{1,2,\ldots,k+1\})\geq f(\{1,2,\ldots,k\}\cup \{j\});$$ $(4)$ For the empty set $\varnothing$, $f(\varnothing)=0$. Confirm that for any three-element subset $T$ of $S$,the inequality $$f(T)\leq \frac{27}{19}f(\{1,2,3\})$$ holds.

2008 IMAC Arhimede, 6

Consider the set of natural numbers $ U = \{1,2,3, ..., 6024 \} $ Prove that for any partition of the $ U $ in three subsets with $ 2008 $ elements each, we can choose a number in each subset so that one of the numbers is the sum of the other two numbers.

2005 National Olympiad First Round, 24

There are $20$ people in a certain community. $10$ of them speak English, $10$ of them speak German, and $10$ of them speak French. We call a [i]committee[/i] to a $3$-subset of this community if there is at least one who speaks English, at least one who speaks German, and at least one who speaks French in this subset. At most how many commitees are there in this community? $ \textbf{(A)}\ 120 \qquad\textbf{(B)}\ 380 \qquad\textbf{(C)}\ 570 \qquad\textbf{(D)}\ 1020 \qquad\textbf{(E)}\ 1140 $

2021 Saudi Arabia Training Tests, 31

Let $n$ be a positive integer. What is the smallest value of $m$ with $m > n$ such that the set $M = \{n, n + 1, ..., m\}$ can be partitioned into subsets so that in each subset, there is a number which equals to the sum of all other numbers of this subset?

2021 Indonesia TST, C

Let $p$ be an odd prime. Determine the number of nonempty subsets from $\{1, 2, \dots, p - 1\}$ for which the sum of its elements is divisible by $p$.

1991 Spain Mathematical Olympiad, 2

Given two distinct elements $a,b \in \{-1,0,1\}$, consider the matrix $A$ . Find a subset $S$ of the set of the rows of $A$, of minimum size, such that every other row of $A$ is a linear combination of the rows in $S$ with integer coefficients.

2020 Iran MO (3rd Round), 3

find all $k$ distinct integers $a_1,a_2,...,a_k$ such that there exists an injective function $f$ from reals to themselves such that for each positive integer $n$ we have $$\{f^n(x)-x| x \in \mathbb{R} \}=\{a_1+n,a_2+n,...,a_k+n\}$$.

1994 Italy TST, 4

Tags: set , subset , algebra
Let $X$ be a set of $n$ elements and $k$ be a positive integer. Consider the family $S_k$ of all $k$-tuples $(E_1,...,E_k)$ with $E_i \subseteq X$ for each $i$. Evaluate the sums $\sum_{(E_1,...,E_k) \in S_k }|E_1 \cap ... \cap E_k|$ and $\sum_{(E_1,...,E_k) \in S_k }|E_1 \cup ... \cup E_k|$

2022 Chile TST IMO, 1

The sets of rational numbers $A = \{a_1, \dots, a_5\}$ and $B = \{b_1, \dots, b_5\}$ both contain $0$ and satisfy the condition that $$ \{a_i + b_j\}_{i,j} = \{0, 1, 2, \dots, 23, 24\}. $$ Determine these sets. (The set $\{a_i + b_j\}_{i,j}$ consists of all possible sums between an element of $A$ and an element of $B$)

2003 Olympic Revenge, 7

Let $X$ be a subset of $R_{+}^{*}$ with $m$ elements. Find $X$ such that the number of subsets with the same sum is maximum.

2012 India Regional Mathematical Olympiad, 4

Let $X=\{1,2,3,...,10\}$. Find the number of pairs of $\{A,B\}$ such that $A\subseteq X, B\subseteq X, A\ne B$ and $A\cap B=\{2,3,5,7\}$.

2012 Belarus Team Selection Test, 3

Define $M_n = \{1,2,...,n\}$, for any $n\in N$. A collection of $3$-element subsets of $M_n$ is said to be [i]fine [/i] if for any coloring of elements of $M_n$ in two colors there is a subset of the collection all three elements of which are of the same color. For any $n\ge 5$ find the minimal possible number of the $3$-element subsets of $M_n$ in the fine collection. (E. Barabanov, S. Mazanik, I. Voronovich)

1978 Polish MO Finals, 4

Let $X$ be a set of $n$ elements. Prove that the sum of the numbers of elements of sets $A\cap B$, where $A$ and $B$ run over all subsets of $X$, is equal to $n4^{n-1}$.

2010 Belarus Team Selection Test, 4.1

Tags: algebra , subset
Find all finite sets $M \subset R, |M| \ge 2$, satisfying the following condition: [i]for all $a, b \in M, a \ne b$, the number $a^3 - \frac{4}{9}b$ also belongs to $M$. [/i] (I. Voronovich)

1961 Putnam, A7

Tags: topology , subset
Let $S$ be a nonempty closed set in the euclidean plane for which there is a closed disk $D$ containing $S$ such that $D$ is a subset of every closed disk that contains $S$. Prove that every point inside $D$ is the midpoint of a segment joining two points of $S.$

1994 IMO Shortlist, 1

$ M$ is a subset of $ \{1, 2, 3, \ldots, 15\}$ such that the product of any three distinct elements of $ M$ is not a square. Determine the maximum number of elements in $ M.$

2014 Czech-Polish-Slovak Match, 6

Let $n \ge 6$ be an integer and $F$ be the system of the $3$-element subsets of the set $\{1, 2,...,n \}$ satisfying the following condition: for every $1 \le i < j \le n$ there is at least $ \lfloor \frac{1}{3} n \rfloor -1$ subsets $A\in F$ such that $i, j \in A$. Prove that for some integer $m \ge 1$ exist the mutually disjoint subsets $A_1, A_2 , ... , A_m \in F $ also, that $|A_1\cup A_2 \cup ... \cup A_m |\ge n-5 $ (Poland) PS. just in case my translation does not make sense, I leave the original in Slovak, in case someone understands something else

2018 Thailand TST, 2

For finite sets $A,M$ such that $A \subseteq M \subset \mathbb{Z}^+$, we define $$f_M(A)=\{x\in M \mid x\text{ is divisible by an odd number of elements of }A\}.$$ Given a positive integer $k$, we call $M$ [i]k-colorable[/i] if it is possible to color the subsets of $M$ with $k$ colors so that for any $A \subseteq M$, if $f_M(A)\neq A$ then $f_M(A)$ and $A$ have different colors. Determine the least positive integer $k$ such that every finite set $M \subset\mathbb{Z}^+$ is k-colorable.

1998 Czech And Slovak Olympiad IIIA, 2

Tags: sum , subset , algebra
Given any set of $14$ (different) natural numbers, prove that for some $k$ ($1 \le k \le 7$) there exist two disjoint $k$-element subsets $\{a_1,...,a_k\}$ and $\{b_1,...,b_k\}$ such that $A =\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k}$ and $B =\frac{1}{b_1}+\frac{1}{b_2}+...+\frac{1}{b_k}$ differ by less than $0.001$, i.e. $|A-B| < 0.001$

2012 Ukraine Team Selection Test, 11

Let $P$ be a polynomial with integer coefficients of degree $d$. For the set $A = \{ a_1, a_2, ..., a_k\}$ of positive integers we denote $S (A) = P (a_1) + P (a_2) + ... + P (a_k )$. The natural numbers $m, n$ are such that $m ^{d+ 1} | n$. Prove that the set $\{1, 2, ..., n\}$ can be subdivided into $m$ disjoint subsets $A_1, A_2, ..., A_m$ with the same number of elements such that $S (A_1) = S(A_2) = ... = S (A_m )$.

1975 Czech and Slovak Olympiad III A, 6

Let $\mathbf M\subseteq\mathbb R^2$ be a set with the following properties: 1) there is a pair $(a,b)\in\mathbf M$ such that $ab(a-b)\neq0,$ 2) if $\left(x_1,y_1\right),\left(x_2,y_2\right)\in\mathbf M$ and $c\in\mathbb R$ then also \[\left(cx_1,cy_1\right),\left(x_1+x_2,y_1+y_2\right),\left(x_1x_2,y_1y_2\right)\in\mathbf M.\] Show that in fact \[\mathbf M=\mathbb R^2.\]

2009 Thailand Mathematical Olympiad, 2

Let $k$ and $n$ be positive integers with $k < n$. Find the number of subsets of $\{1, 2, . . . , n\}$ such that the difference between the largest and smallest elements in the subset is $k$.

2008 Thailand Mathematical Olympiad, 9

Find the number of pairs of sets $(A, B)$ satisfying $A \subseteq B \subseteq \{1, 2, ...,10\}$