This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 594

1980 Bundeswettbewerb Mathematik, 4

Consider the sequence $a_1, a_2, a_3, \ldots$ with $$ a_n = \frac{1}{n(n+1)}.$$ In how many ways can the number $\frac{1}{1980}$ be represented as the sum of finitely many consecutive terms of this sequence?

1999 Abels Math Contest (Norwegian MO), 4

For every nonempty subset $R$ of $S = \{1,2,...,10\}$, we define the alternating sum $A(R)$ as follows: If $r_1,r_2,...,r_k$ are the elements of $R$ in the increasing order, then $A(R) = r_k -r_{k-1} +r_{k-2}- ... +(-1)^{k-1}r_1$. (a) Is it possible to partition $S$ into two sets having the same alternating sum? (b) Determine the sum $\sum_{R} A(R)$, where $R$ runs over all nonempty subsets of $S$.

2014 Denmark MO - Mohr Contest, 5

Let $x_0, x_1, . . . , x_{2014}$ be a sequence of real numbers, which for all $i < j$ satisfy $x_i + x_j \le 2j$. Determine the largest possible value of the sum $x_0 + x_1 + · · · + x_{2014}$.

2007 Junior Balkan Team Selection Tests - Moldova, 4

The average age of the participants in a mathematics competition (gymnasts and high school students) increases by exactly one month if three high school age students $18$ years each are included in the competition or if three gymnasts aged $12$ years each are excluded from the competition. How many participants were initially in the contest?

1997 Abels Math Contest (Norwegian MO), 1

We call a positive integer $n$ [i]happy [/i] if there exist integers $a,b$ such that $a^2+b^2 = n$. If $t$ is happy, show that (a) $2t$ is [i]happy[/i], (b) $3t$ is not [i]happy[/i]

1978 All Soviet Union Mathematical Olympiad, 267

Given $a_1, a_2, ... , a_n$. Define $$b_k = \frac{a_1 + a_2 + ... + a_k}{k}$$ for $1 \le k\le n.$ Let $$C = (a_1 - b_1)^2 + (a_2 - b_2)^2 + ... + (a_n - b_n)^2, D = (a_1 - b_n)^2 + (a_2 - b_n)^2 + ... + (a_n - b_n)^2$$ Prove that $C \le D \le 2C$.

2014 Greece JBMO TST, 4

Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when: a) $n=2014$ b) $n=2015 $ c) $n=2018$

2011 Tournament of Towns, 2

$49$ natural numbers are written on the board. All their pairwise sums are different. Prove that the largest of the numbers is greater than $600$. [hide=original wording in Russian]На доске написаны 49 натуральных чисел. Все их попарные суммы различны. Докажите, что наибольшее из чисел больше 600[/hide]

Kvant 2020, M942

Tags: sum
We divide the set $\{1,2,\cdots,2n\}$ into two disjoint sets : $\{a_1,a_2,\cdots,a_n\}$ and $\{b_1,b_2,\cdots,b_n\}$ such that : $$a_1<a_2<\cdots<a_n\text{ and } b_1>b_2>\cdots>b_n.$$ Show that : $$|a_1-b_1|+\cdots+|a_n-b_n|=n^2. $$

2013 Dutch BxMO/EGMO TST, 2

Consider a triple $(a, b, c)$ of pairwise distinct positive integers satisfying $a + b + c = 2013$. A step consists of replacing the triple $(x, y, z)$ by the triple $(y + z - x,z + x - y,x + y - z)$. Prove that, starting from the given triple $(a, b,c)$, after $10$ steps we obtain a triple containing at least one negative number.

2019 Final Mathematical Cup, 2

Tags: sum , polynomial , algebra
Let $m=\frac{-1+\sqrt{17}}{2}$. Let the polynomial $P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ is given, where $n$ is a positive integer, the coefficients $a_0,a_1,a_2,...,a_n$ are positive integers and $P(m) =2018$ . Prove that the sum $a_0+a_1+a_2+...+a_n$ is divisible by $2$ .

2015 Czech-Polish-Slovak Junior Match, 6

The vertices of the cube are assigned $1, 2, 3..., 8$ and then each edge we assign the product of the numbers assigned to its two extreme points. Determine the greatest possible the value of the sum of the numbers assigned to all twelve edges of the cube.

2006 Singapore Junior Math Olympiad, 2

The fraction $\frac23$ can be eypressed as a sum of two distinct unit fractions: $\frac12 + \frac16$ . Show that the fraction $\frac{p-1}{p}$ where $p\ge 5$ is a prime cannot be expressed as a sum of two distinct unit fractions.

1984 Polish MO Finals, 1

Find the number of all real functions $f$ which map the sum of $n$ elements into the sum of their images, such that $f^{n-1}$ is a constant function and $f^{n-2}$ is not. Here $f^0(x) = x$ and $f^k = f \circ f^{k-1}$ for $k \ge 1$.

1955 Moscow Mathematical Olympiad, 287

a) The numbers $1, 2, . . . , 49$ are arranged in a square table as follows: [img]https://cdn.artofproblemsolving.com/attachments/5/0/c2e350a6ad0ebb8c728affe0ebb70783baf913.png[/img] Among these numbers we select an arbitrary number and delete from the table the row and the column which contain this number. We do the same with the remaining table of $36$ numbers, etc., $7$ times. Find the sum of the numbers selected. b) The numbers $1, 2, . . . , k^2$ are arranged in a square table as follows: [img]https://cdn.artofproblemsolving.com/attachments/2/d/28d60518952c3acddc303e427483211c42cd4a.png[/img] Among these numbers we select an arbitrary number and delete from the table the row and the column which contain this number. We do the same with the remaining table of $(k - 1)^2$ numbers, etc., $k$ times. Find the sum of the numbers selected.

2011 Argentina National Olympiad, 1

Tags: sum , algebra
For $k=1,2,\ldots ,2011$ we denote $S_k=\frac{1}{k}+\frac{1}{k+1}+\cdots +\frac{1}{2011}$. Compute the sum $S_1+S_1^2+S_2^2+\cdots +S_{2011}^2$.

1992 Austrian-Polish Competition, 8

Tags: product , sum , algebra
Let $n\ge 3$ be a given integer. Nonzero real numbers $a_1,..., a_n$ satisfy: $\frac{-a_1-a_2+a_3+...a_n}{a_1}=\frac{a_1-a_2-a_3+a_4+...a_n}{a_2}=...=\frac{a_1+...+a_{n-2}-a_{n-1}-a_n}{a_{n-1}}=\frac{-a_1+a_2+...+a_{n-1}-a_n}{a_{n}}$ What values can be taken by the product $\frac{a_2+a_3+...a_n}{a_1}\cdot \frac{a_1+a_3+a_4+...a_n}{a_2}\cdot ...\cdot \frac{+a_1+a_2+...+a_{n-1}}{a_{n}}$ ?

2012 India PRMO, 16

Tags: sum , function , algebra
Let $N$ be the set of natural numbers. Suppose $f: N \to N$ is a function satisfying the following conditions: (a) $f(mn) =f(m)f(n)$ (b) $f(m) < f(n)$ if $m < n$ (c) $f(2) = 2$ What is the sum of $\Sigma_{k=1}^{20}f(k)$?

2002 Switzerland Team Selection Test, 3

Let $d_1,d_2,d_3,d_4$ be the four smallest divisors of a positive integer $n$ (having at least four divisors). Find all $n$ such that $d_1^2+d_2^2+d_3^2+d_4^2 = n$.

2018 Greece JBMO TST, 3

$12$ friends play a tennis tournament, where each plays only one game with any of the other eleven. Winner gets one points. Loser getos zero points, and there is no draw. Final points of the participants are $B_1, B_2, ..., B_{12}$. Find the largest possible value of the sum $\Sigma_3=B_1^3+B_2^3+ ... + B_{12}^3$ .

2015 Dutch IMO TST, 4

Each of the numbers $1$ up to and including $2014$ has to be coloured; half of them have to be coloured red the other half blue. Then you consider the number $k$ of positive integers that are expressible as the sum of a red and a blue number. Determine the maximum value of $k$ that can be obtained.

2002 Estonia National Olympiad, 5

Tags: sum , sequence , algebra
The teacher writes numbers $1$ at both ends of the blackboard. The first student adds a $2$ in the middle between them, each next student adds the sum of each two adjacent numbers already on the blackboard between them (hence there are numbers $1, 3, 2, 3, 1$ on the blackboard after the second student, $1, 4, 3, 5, 2, 5, 3, 4, 1$ after the third student etc.) Find the sum of all numbers on the blackboard after the $n$-th student.

2013 Tournament of Towns, 4

Is it true that every integer is a sum of finite number of cubes of distinct integers?

2020 Kyiv Mathematical Festival, 1.2

Prove that (a) for each $n \ge 1$ $$\sum_{k=0}^n C_{n}^{k} \left(\frac{k}{n}-\frac{1}{2} \right)^2 \frac{1}{2^n}=\frac{1}{4n}$$ (b) for every n \ge m \ge 2 $$\sum_{\ell=0}^n \sum_{k_1+...+k_n=\ell,k_i=0,...,m} \frac{\ell!}{k_1!...k_n!} \frac{1}{(m+1)^n} \left(\frac{\ell}{n}-\frac{m}{2} \right)^2= \left(\frac{m^3-3m^2}{12(m+1)}+\frac{m}{2}-\frac{m}{3(m+1)}\right)n$$

2010 Argentina National Olympiad, 4

Tags: algebra , sum
Find the sum of all products $a_1a_2...a_{50}$ , where $a_1,a_2,...,a_{50}$ are distinct positive integers, less than or equal to $101$, and such that no two of them add up to $101$.