This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

1983 Spain Mathematical Olympiad, 8

In $1960$, the oldest of three brothers has an age that is the sum of the of his younger siblings. A few years later, the sum of the ages of two of brothers is double that of the other. A number of years have now passed since $1960$, which is equal to two thirds of the sum of the ages that the three brothers were at that year, and one of them has reached $21$ years. What is the age of each of the others two?

2010 Contests, 1

Find all quadruples of real numbers $(a,b,c,d)$ satisfying the system of equations \[\begin{cases}(b+c+d)^{2010}=3a\\ (a+c+d)^{2010}=3b\\ (a+b+d)^{2010}=3c\\ (a+b+c)^{2010}=3d\end{cases}\]

2022 Bulgaria National Olympiad, 4

Let $n\geq 4$ be a positive integer and $x_{1},x_{2},\ldots ,x_{n},x_{n+1},x_{n+2}$ be real numbers such that $x_{n+1}=x_{1}$ and $x_{n+2}=x_{2}$. If there exists an $a>0$ such that \[x_{i}^2=a+x_{i+1}x_{i+2}\quad\forall 1\leq i\leq n\] then prove that at least $2$ of the numbers $x_{1},x_{2},\ldots ,x_{n}$ are negative.

2017 Hanoi Open Mathematics Competitions, 8

Determine all real solutions $x, y, z$ of the following system of equations: $\begin{cases} x^3 - 3x = 4 - y \\ 2y^3 - 6y = 6 - z \\ 3z^3 - 9z = 8 - x\end{cases}$

1988 IberoAmerican, 5

Consider all the numbers of the form $x+yt+zt^2$, with $x,y,z$ rational numbers and $t=\sqrt[3]{2}$. Prove that if $x+yt+zt^2\not= 0$, then there exist rational numbers $u,v,w$ such that \[(x+yt+z^2)(u+vt+wt^2)=1\]

2010 Saudi Arabia BMO TST, 4

Find all triples $(x,y, z)$ of integers such that $$\begin{cases} x^2y + y^2z + z^2x= 2010^2 \\ xy^2 + yz^2 + zx^2= -2010 \end{cases}$$

2004 Switzerland Team Selection Test, 7

The real numbers $a,b,c,d$ satisfy the equations: $$\begin{cases} a =\sqrt{45-\sqrt{21-a}} \\ b =\sqrt{45+\sqrt{21-b}}\\ c =\sqrt{45-\sqrt{21+c}}\ \\ d=\sqrt{45+\sqrt{21+d}} \end {cases}$$ Prove that $abcd = 2004$.

1967 IMO Longlists, 33

In what case does the system of equations $\begin{matrix} x + y + mz = a \\ x + my + z = b \\ mx + y + z = c \end{matrix}$ have a solution? Find conditions under which the unique solution of the above system is an arithmetic progression.

2021 Serbia Team Selection Test, P3

Given is a prime number $p$. Find the number of positive integer solutions $(a, b, c, d)$ of the system of equations $ac+bd = p(a+c)$ and $bc-ad = p(b-d)$.

1993 Austrian-Polish Competition, 5

Solve in real numbers the system $$\begin{cases} x^3 + y = 3x + 4 \\ 2y^3 + z = 6y + 6 \\ 3z^3 + x = 9z + 8\end{cases}$$

1963 Poland - Second Round, 1

Prove that if the numbers $ p $, $ q $, $ r $ satisfy the equality $$ p+q + r=1$$ $$ \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 0$$ then for any numbers $ a $, $ b $, $ c $ equality holds $$a^2 + b^2 + c^2 = (pa + qb + rc)^2 + (qa + rb + pc)^2 + (ra + pb + qc)^2.$$

1997 Israel National Olympiad, 1

Find all real solutions to the system of equations $$\begin{cases} x^2 +y^2 = 6z \\ y^2 +z^2 = 6x \\ z^2 +x^2 = 6y \end{cases}$$

2021 Dutch BxMO TST, 2

Find all triplets $(x, y, z)$ of real numbers for which $$\begin{cases}x^2- yz = |y-z| +1 \\ y^2 - zx = |z-x| +1 \\ z^2 -xy = |x-y| + 1 \end{cases}$$

2021 South Africa National Olympiad, 5

Determine all polynomials $a(x)$, $b(x)$, $c(x)$, $d(x)$ with real coefficients satisfying the simultaneous equations \begin{align*} b(x) c(x) + a(x) d(x) & = 0 \\ a(x) c(x) + (1 - x^2) b(x) d(x) & = x + 1. \end{align*}

2008 Tournament Of Towns, 2

Solve the system of equations $(n > 2)$ \[\begin{array}{c}\ \sqrt{x_1}+\sqrt{x_2+x_3+\cdots+x_n}=\sqrt{x_2}+\sqrt{x_3+x_4+\cdots+x_n+x_1}=\cdots=\sqrt{x_n}+\sqrt{x_1+x_2+\cdots+x_{n-1}} \end{array}, \] \[x_1-x_2=1.\]

2005 Putnam, B5

Let $P(x_1,\dots,x_n)$ denote a polynomial with real coefficients in the variables $x_1,\dots,x_n,$ and suppose that (a) $\left(\frac{\partial^2}{\partial x_1^2}+\cdots+\frac{\partial^2}{\partial x_n^2} \right)P(x_1,\dots,x_n)=0$ (identically) and that (b) $x_1^2+\cdots+x_n^2$ divides $P(x_1,\dots,x_n).$ Show that $P=0$ identically.

2014 Cuba MO, 5

Determine all real solutions to the system of equations: $$x^2 - y = z^2$$ $$y^2 - z = x^2$$ $$z^2 - x = y^2$$

1983 IMO Shortlist, 20

Find all solutions of the following system of $n$ equations in $n$ variables: \[\begin{array}{c}\ x_1|x_1| - (x_1 - a)|x_1 - a| = x_2|x_2|,x_2|x_2| - (x_2 - a)|x_2 - a| = x_3|x_3|,\ \vdots \ x_n|x_n| - (x_n - a)|x_n - a| = x_1|x_1|\end{array}\] where $a$ is a given number.

1997 Poland - Second Round, 1

For the real number $a$ find the number of solutions $(x, y, z)$ of a system of the equations: $\left\{\begin{array}{lll} x+y^2+z^2=a \\ x^2+y+z^2=a \\ x^2+y^2+z=a\end{array}\right.$

2018 IMO Shortlist, A2

Find all integers $n \geq 3$ for which there exist real numbers $a_1, a_2, \dots a_{n + 2}$ satisfying $a_{n + 1} = a_1$, $a_{n + 2} = a_2$ and $$a_ia_{i + 1} + 1 = a_{i + 2},$$ for $i = 1, 2, \dots, n$. [i]Proposed by Patrik Bak, Slovakia[/i]

2011 Saudi Arabia Pre-TST, 3.4

Find all quadruples $(x,y,z,w)$ of integers satisfying the sys­tem of equations $$x + y + z + w = xy + yz + zx + w^2 - w = xyz - w^3 = - 1$$

1980 IMO Shortlist, 11

Ten gamblers started playing with the same amount of money. Each turn they cast (threw) five dice. At each stage the gambler who had thrown paid to each of his 9 opponents $\frac{1}{n}$ times the amount which that opponent owned at that moment. They threw and paid one after the other. At the 10th round (i.e. when each gambler has cast the five dice once), the dice showed a total of 12, and after payment it turned out that every player had exactly the same sum as he had at the beginning. Is it possible to determine the total shown by the dice at the nine former rounds ?

2013 Estonia Team Selection Test, 1

Find all prime numbers $p$ for which one can find a positive integer $m$ and nonnegative integers $a_0,a_1,...,a_m$ less than $p$ such that $$\begin{cases} a_0+a_1p+...+a_{m-1}p^{m-1}+a_{m}p^{m} = 2013 \\ a_0+a_1+...+a_{m-1}+a_{m} = 11\end{cases}$$

2018 Latvia Baltic Way TST, P2

Find all ordered pairs $(x,y)$ of real numbers that satisfy the following system of equations: $$\begin{cases} y(x+y)^2=2\\ 8y(x^3-y^3) = 13. \end{cases}$$

2013 Estonia Team Selection Test, 1

Find all prime numbers $p$ for which one can find a positive integer $m$ and nonnegative integers $a_0,a_1,...,a_m$ less than $p$ such that $$\begin{cases} a_0+a_1p+...+a_{m-1}p^{m-1}+a_{m}p^{m} = 2013 \\ a_0+a_1+...+a_{m-1}+a_{m} = 11\end{cases}$$