This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

1972 IMO Longlists, 2

Find all real values of the parameter $a$ for which the system of equations \[x^4 = yz - x^2 + a,\] \[y^4 = zx - y^2 + a,\] \[z^4 = xy - z^2 + a,\] has at most one real solution.

2011 Regional Competition For Advanced Students, 2

Determine all triples $(x,y,z)$ of real numbers such that the following system of equations holds true: \begin{align*}2^{\sqrt[3]{x^2}}\cdot 4^{\sqrt[3]{y^2}}\cdot 16^{\sqrt[3]{z^2}}&=128\\ \left(xy^2+z^4\right)^2&=4+\left(xy^2-z^4\right)^2\mbox{.}\end{align*}

1961 IMO, 1

Solve the system of equations: \[ x+y+z=a \] \[ x^2+y^2+z^2=b^2 \] \[ xy=z^2 \] where $a$ and $b$ are constants. Give the conditions that $a$ and $b$ must satisfy so that $x,y,z$ are distinct positive numbers.

III Soros Olympiad 1996 - 97 (Russia), 10.9

For any positive $a$ and $b$, find positive solutions of the system $$\begin{cases} \dfrac{a^2}{x^2}- \dfrac{b^2}{y^2}=8(y^4-x^4) \\ ax-by=x^4-y^4 \end{cases}$$

1986 AIME Problems, 4

Determine $3x_4+2x_5$ if $x_1$, $x_2$, $x_3$, $x_4$, and $x_5$ satisfy the system of equations below. \[ \begin{array}{l} 2x_1+x_2+x_3+x_4+x_5=6 \\ x_1+2x_2+x_3+x_4+x_5=12 \\ x_1+x_2+2x_3+x_4+x_5=24 \\ x_1+x_2+x_3+2x_4+x_5=48 \\ x_1+x_2+x_3+x_4+2x_5=96 \\ \end{array} \]

2015 AMC 10, 16

If $y+4 = (x-2)^2, x+4 = (y-2)^2$, and $x \neq y$, what is the value of $x^2+y^2$? $ \textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30} $

1982 Spain Mathematical Olympiad, 1

On the puzzle page of a newspaper this problem is proposed: “Two children, Antonio and José, have $160$ comics. Antonio counts his by $7$ by $7$ and there are $4$ left over. José counts his $ 8$ by $8$ and he also has $4$ left over. How many comics does he have each?" In the next issue of the newspaper this solution is given: “Antonio has $60$ comics and José has $100$.” Analyze this solution and indicate what a mathematician would do with this problem.

2024 Bulgarian Autumn Math Competition, 10.1

Find all real solutions to the system of equations: $$\begin{cases} (x^2+xy+y^2)\sqrt{x^2+y^2} = 88 \\ (x^2-xy+y^2)\sqrt{x^2+y^2} = 40 \end{cases}$$

1971 IMO Longlists, 16

Knowing that the system \[x + y + z = 3,\]\[x^3 + y^3 + z^3 = 15,\]\[x^4 + y^4 + z^4 = 35,\] has a real solution $x, y, z$ for which $x^2 + y^2 + z^2 < 10$, find the value of $x^5 + y^5 + z^5$ for that solution.

1987 Romania Team Selection Test, 11

Let $P(X,Y)=X^2+2aXY+Y^2$ be a real polynomial where $|a|\geq 1$. For a given positive integer $n$, $n\geq 2$ consider the system of equations: \[ P(x_1,x_2) = P(x_2,x_3) = \ldots = P(x_{n-1},x_n) = P(x_n,x_1) = 0 . \] We call two solutions $(x_1,x_2,\ldots,x_n)$ and $(y_1,y_2,\ldots,y_n)$ of the system to be equivalent if there exists a real number $\lambda \neq 0$, $x_1=\lambda y_1$, $\ldots$, $x_n= \lambda y_n$. How many nonequivalent solutions does the system have? [i]Mircea Becheanu[/i]

2016 Japan Mathematical Olympiad Preliminary, 7

Let $a, b, c, d$ be real numbers satisfying the system of equation $\[(a+b)(c+d)=2 \\ (a+c)(b+d)=3 \\ (a+d)(b+c)=4\]$ Find the minimum value of $a^2+b^2+c^2+d^2$.

2021 Junior Balkan Team Selection Tests - Moldova, 6

Solve the system of equations $$\begin{cases} (x+y)(x^2-y^2)=32 \\ (x-y)(x^2+y^2)=20 \end{cases}$$

2018 Junior Balkan Team Selection Tests - Romania, 1

Determine all triples of real numbers $(a,b,c)$ that satisfy simultaneously the equations: $$\begin{cases} a(b^2 + c) = c(c + ab) \\ b(c^2 + a) = a(a + bc) \\ c(a^2 + b) = b(b + ca) \end{cases}$$

2007 Postal Coaching, 2

Let $a_1, a_2, a_3$ be three distinct real numbers. Define $$\begin{cases} b_1=\left(1+\dfrac{a_1a_2}{a_1-a_2}\right)\left(1+\dfrac{a_1a_3}{a_1-a_3}\right) \\ \\ b_2=\left(1+\dfrac{a_2a_3}{a_2-a_3}\right)\left(1+\dfrac{a_2a_1}{a_2-a_1}\right) \\ \\ b_3=\left(1+\dfrac{a_3a_1}{a_3-a_1}\right)\left(1+\dfrac{a_3a_2}{a_3-a_2}\right) \end {cases}$$ Prove that $$1 + |a_1b_1+a_2b_2+a_3b_3| \le (1+|a_1|) (1+|a_2|)(1+|a_3|)$$ When does equality hold?

2016 Canada National Olympiad, 2

Consider the following system of $10$ equations in $10$ real variables $v_1, \ldots, v_{10}$: \[v_i = 1 + \frac{6v_i^2}{v_1^2 + v_2^2 + \cdots + v_{10}^2} \qquad (i = 1, \ldots, 10).\] Find all $10$-tuples $(v_1, v_2, \ldots , v_{10})$ that are solutions of this system.

2008 Hong Kong TST, 2

Find the total number of solutions to the following system of equations: \[ \begin{cases} a^2\plus{}bc\equiv a\pmod {37}\\ b(a\plus{}d)\equiv b\pmod {37}\\ c(a\plus{}d)\equiv c\pmod{37}\\ bc\plus{}d^2\equiv d\pmod{37}\\ ad\minus{}bc\equiv 1\pmod{37}\end{cases}\]

II Soros Olympiad 1995 - 96 (Russia), 9.6

Let $f(x)=x^2-6x+5$. On the plane $(x, y)$ draw a set of points $M(x, y)$ whose coordinates satisfy the inequalities $$\begin{cases} f(x)+f(y)\le 0 \\ f(x)-f(y)\ge 0 \end{cases}$$

2009 Denmark MO - Mohr Contest, 2

Solve the system of equations $$\begin{cases} \dfrac{1}{x+y}+ x = 3 \\ \\ \dfrac{x}{x+y}=2 \end{cases}$$

2017 Ecuador Juniors, 2

Find all pairs of real numbers $x, y$ that satisfy the following system of equations $$\begin{cases} x^2 + 3y = 10 \\ 3 + y = \frac{10}{ x} \end{cases}$$

1974 Swedish Mathematical Competition, 5

Find the smallest positive real $t$ such that \[\left\{ \begin{array}{l} x_1 + x_3 = 2t x_2 \\ x_2 + x_4 = 2t x_3 \\ x_3 + x_5=2t x_4 \\ \end{array} \right. \] has a solution $x_1$, $x_2$, $x_3$, $x_4$, $x_5$ in non-negative reals, not all zero.

2018 CMIMC Algebra, 5

Suppose $a$, $b$, and $c$ are nonzero real numbers such that \[bc+\frac1a = ca+\frac2b = ab+\frac7c = \frac1{a+b+c}.\] Find $a+b+c$.

2016 Indonesia TST, 2

Determine all triples of real numbers $(x, y, z)$ which satisfy the following system of equations: \[ \begin{cases} x+y+z=0 \\ x^3+y^3+z^3 = 90 \\ x^5+y^5+z^5=2850. \end{cases} \]

2004 China Team Selection Test, 1

Given integer $ n$ larger than $ 5$, solve the system of equations (assuming $x_i \geq 0$, for $ i=1,2, \dots n$): \[ \begin{cases} \displaystyle x_1+ \phantom{2^2} x_2+ \phantom{3^2} x_3 + \cdots + \phantom{n^2} x_n &= n+2, \\ x_1 + 2\phantom{^2}x_2 + 3\phantom{^2}x_3 + \cdots + n\phantom{^2}x_n &= 2n+2, \\ x_1 + 2^2x_2 + 3^2 x_3 + \cdots + n^2x_n &= n^2 + n +4, \\ x_1+ 2^3x_2 + 3^3x_3+ \cdots + n^3x_n &= n^3 + n + 8. \end{cases} \]

1965 IMO Shortlist, 2

Consider the sytem of equations \[ a_{11}x_1+a_{12}x_2+a_{13}x_3 = 0 \]\[a_{21}x_1+a_{22}x_2+a_{23}x_3 =0\]\[a_{31}x_1+a_{32}x_2+a_{33}x_3 = 0 \] with unknowns $x_1, x_2, x_3$. The coefficients satisfy the conditions: a) $a_{11}, a_{22}, a_{33}$ are positive numbers; b) the remaining coefficients are negative numbers; c) in each equation, the sum ofthe coefficients is positive. Prove that the given system has only the solution $x_1=x_2=x_3=0$.

VI Soros Olympiad 1999 - 2000 (Russia), 11.1

Solve the system of equations $$\begin{cases} x^2+arc siny =y^2+arcsin x \\ x^2+y^2-3x=2y\sqrt{x^2-2x-y}+1 \end{cases}$$