This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 124

2020 Dürer Math Competition (First Round), P2

How many ways can you fill a table of size $n\times n$ with integers such that each cell contains the total number of even numbers in its row and column other than itself? Two tables are different if they differ in at least one cell.

2015 IFYM, Sozopol, 8

A cross with length $p$ (or [i]p-cross[/i] for short) will be called the figure formed by a unit square and 4 rectangles $p-1$ x $1$ on its sides. What’s the least amount of colors one has to use to color the cells of an infinite table, so that each [i]p-cross[/i] on it covers cells, no two of which are in the same color?

2017 Kürschák Competition, 3

An $n$ by $n$ table has an integer in each cell, such that no two cells within a row share the same number. Prove that it is possible to permute the elements within each row to obtain a table that has $n$ distinct numbers in each column.

1962 All Russian Mathematical Olympiad, 026

Given positive numbers $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n$. Is known that $$a_1+a_2+...+a_m=b_1+b_2+...+b_n.$$ Prove that you can fill an empty table with $m$ rows and $n$ columns with no more than $(m+n-1)$ positive number in such a way, that for all $i,j$ the sum of the numbers in the $i$-th row will equal to $a_i$, and the sum of the numbers in the $j$-th column -- to $b_j$.

1981 All Soviet Union Mathematical Olympiad, 314

Is it possible to fill a rectangular table with black and white squares (only) so, that the number of black squares will equal to the number of white squares, and each row and each column will have more than $75\%$ squares of the same colour?

2019 Dürer Math Competition (First Round), P3

a) We are playing the following game on this table: In each move we select a row or a column of the table, reduce two neighboring numbers in that row or column by $1$ and increase the third one by $1$. After some of these moves can we get to a table with all the same entries? b) This time we have the choice to arrange the integers from $1$ to $9$ in the$ 3 \times3$ table. Still using the same moves now our aim is to create a table with all the same entries, maximising the value of the entries. What is the highest possible number we can achieve?

1987 All Soviet Union Mathematical Olympiad, 453

Each field of the $1987\times 1987$ board is filled with numbers, which absolute value is not greater than one. The sum of all the numbers in every $2\times 2$ square equals $0$. Prove that the sum of all the numbers is not greater than $1987$.

2019 Greece JBMO TST, 4

Consider a $8\times 8$ chessboard where all $64$ unit squares are at the start white. Prove that, if any $12$ of the $64$ unit square get painted black, then we can find $4$ lines and $4$ rows that have all these $12$ unit squares.

2016 Junior Regional Olympiad - FBH, 5

In table [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvZC9hLzBjNjFlZWFjM2ZlOTQzMTk2YTdkMzQ2MjJiYzYyMWFlN2Y0ZGZlLnBuZw==&rn=dGFibGljYWEucG5n[/img] $10$ numbers are circled, in every row and every column exactly one. Prove that among them, there are at least two equal

2014 Tournament of Towns., 3

The entries of a $7 \times 5$ table are fi lled with numbers so that in each $2 \times 3$ rectangle (vertical or horizontal) the sum of numbers is $0$. For $100$ dollars Peter may choose any single entry and learn the number in it. What is the least amount of dollars he should spend in order to learn the total sum of numbers in the table for sure?

2021 Thailand TSTST, 2

Let $d\geq 1$ and $n\geq 0$ be integers. Find the number of ways to write down a nonnegative integer in each square of a $d\times d$ grid such that the numbers in any set of $d$ squares, no two in the same row or column, sum to $n$.

2006 Estonia Team Selection Test, 3

A grid measuring $10 \times 11$ is given. How many "crosses" covering five unit squares can be placed on the grid? (pictured right) so that no two of them cover the same square? [img]https://cdn.artofproblemsolving.com/attachments/a/7/8a5944233785d960f6670e34ca7c90080f0bd6.png[/img]

2005 Junior Tuymaada Olympiad, 1

In each cell of the table $ 3 \times 3 $ there is one of the numbers $1, 2$ and $3$. Dima counted the sum of the numbers in each row and in each column. What is the greatest number of different sums he could get?

2016 Saudi Arabia Pre-TST, 1.4

The natural numbers $0, 1, 2, 3, . . .$ are written on the square table $2015\times 2015$ in a circular order (anti-clockwise) such that $0$ is in the center of the table. The rows and columns are labelled from bottom to top and from left to right respectively. (see figure below) 1. The number $2015$ is in which row and which column? 2. We are allowed to perform the following operations: First, we replace the number $0$ in the center by $14$, after that, each time, we can add $1$ to each of $12$ numbers on $12$ consecutive unit squares in a row, or $12$ consecutive unit squares in a column, or $12$ unit squares in a rectangle $3\times 4$. After a finite number of steps, can we make all numbers on the table are multiples of $2016$? [img]https://cdn.artofproblemsolving.com/attachments/c/d/223b32c0e3f58f62d0d40fa78c09a2cd035ed5.png[/img]

2014 Ukraine Team Selection Test, 7

For each natural $n \ge 4$, find the smallest natural number $k$ that satisfies following condition: For an arbitrary arrangement of $k$ chips of two colors on $n\times n$ board, there exists a non-empty set such that all columns and rows contain even number ($0$ is also possible) of chips each color.

1961 All Russian Mathematical Olympiad, 007

Given some $m\times n$ table, and some numbers in its fields. You are allowed to change the sign in one row or one column simultaneously. Prove that you can obtain a table, with nonnegative sums over each row and over each column.

2013 Portugal MO, 5

Liliana wants to paint a $m\times n$ board. Liliana divides each unit square by one of its diagonals and paint one of the halves of the square with black and the other half with white in such a way that triangles that have a common side haven't the same colour. How many possibilities has Liliana to paint the board?

2024 Junior Balkan Team Selection Tests - Romania, P1

The integers from 1 to 49 are written in a $7\times 7$ table, such that for any $k\in\{1,2,\ldots,7\}$ the product of the numbers in the $k$-th row equals the product of the numbers in the $(8-k)$-th row. [list=a] [*]Prove that there exists a row such that the sum of the numbers written on it is a prime number. [*]Give an example of such a table. [/list] [i]Cristi Săvescu[/i]

2018 IFYM, Sozopol, 8

Find all positive integers $n$ for which a square[b][i] n x n[/i][/b] can be covered with rectangles [b][i]k x 1[/i][/b] and one square [b][i]1 x 1[/i][/b] when: a) $k = 4$ b) $k = 8$

2020 Tournament Of Towns, 1

Is it possible to fill a $40 \times 41$ table with integers so that each integer equals the number of adjacent (by an edge) cells with the same integer? Alexandr Gribalko

2014 IFYM, Sozopol, 1

Each of the cells of a table 2014 x 2014 is colored in white or black. It is known that each square 2 x 2 contains an even number of black cells and each cross (3 x 3 square without its corner cells) contains an odd number of black cells. Prove that the 4 corner cells of the table are in the same color.

2009 Grand Duchy of Lithuania, 5

Consider a table whose entries are integers. Adding a same integer to all entries on a same row, or on a same column, is called an [i]operation[/i]. It is given that, for infinitely many positive integers $n$, one can obtain, through a finite number of operations, a table having all entries divisible by $n$. Prove that, through a finite number of operations, one can obtain the table whose all entries are zeroes.

2016 IFYM, Sozopol, 4

A plane is cut into unit squares, which are then colored in $n$ colors. A polygon $P$ is created from $n$ unit squares that are connected by their sides. It is known that any cell polygon created by $P$ with translation, covers $n$ unit squares in different colors. Prove that the plane can be covered with copies of $P$ so that each cell is covered exactly once.

2012 Silk Road, 2

In each cell of the table $4 \times 4$, in which the lines are labeled with numbers $1,2,3,4$, and columns with letters $a,b,c,d$, one number is written: $0$ or $1$ . Such a table is called [i]valid [/i] if there are exactly two units in each of its rows and in each column. Determine the number of [i]valid [/i] tables.

2008 Tournament Of Towns, 5

We may permute the rows and the columns of the table below. How may different tables can we generate? 1 2 3 4 5 6 7 7 1 2 3 4 5 6 6 7 1 2 3 4 5 5 6 7 1 2 3 4 4 5 6 7 1 2 3 3 4 5 6 7 1 2 2 3 4 5 6 7 1