This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2020 Ukraine Team Selection Test, 3

Altitudes $AH1$ and $BH2$ of acute triangle $ABC$ intersect at $H$. Let $w1$ be the circle that goes through $H2$ and touches the line $BC$ at $H1$, and let $w2$ be the circle that goes through $H1$ and touches the line $AC$ at $H2$. Prove, that the intersection point of two other tangent lines $BX$ and $AY$( $X$ and $Y$ are different from $H1$ and $H2$) to circles $w1$ and $w2$ respectively, lies on the circumcircle of triangle $HXY$. Proposed by [i]Danilo Khilko[/i]

2017 Bulgaria EGMO TST, 3

Let $a$, $b$, $c$ and $d$ be positive real numbers with $a+b+c+d = 4$. Prove that $\frac{a}{b^2 + 1} + \frac{b}{c^2+1} + \frac{c}{d^2+1} + \frac{d}{a^2+1} \geq 2$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.7

Write the equation of the line tangent to the graph of the function $y = x^4-x^2 + x$ to at least at two points.

2022 German National Olympiad, 5

Let $ABC$ be an equilateral triangle with circumcircle $k$. A circle $q$ touches $k$ from outside in a point $D$, where the point $D$ on $k$ is chosen so that $D$ and $C$ lie on different sides of the line $AB$. We now draw tangent lines from $A,B$ and $C$ to the circle $q$ and denote the lengths of the respective tangent line segments by $a,b$ and $c$. Prove that $a+b=c$.

2022 Bulgaria National Olympiad, 2

Let $ABC$ be an acute triangle and $M$ be the midpoint of $AB$. A circle through the points $B$ and $C$ intersects the segments $CM$ and $BM$ at points $P$ and $Q$ respectively. Point $K$ is symmetric to $P$ with respect to point $M$. The circumcircles of $\triangle AKM$ and $\triangle CQM$ intersect for the second time at $X$. The circumcircles of $\triangle AMC$ and $\triangle KMQ$ intersect for the second time at $Y$. The segments $BP$ and $CQ$ intersect at point $T$. Prove that the line $MT$ is tangent to the circumcircle of $\triangle MXY$.