Found problems: 229
2017 CMIMC Team, 3
Suppose Pat and Rick are playing a game in which they take turns writing numbers from $\{1, 2, \dots, 97\}$ on a blackboard. In each round, Pat writes a number, then Rick writes a number; Rick wins if the sum of all the numbers written on the blackboard after $n$ rounds is divisible by 100. Find the minimum positive value of $n$ for which Rick has a winning strategy.
2021 MOAA, 9
Mr. DoBa has a bag of markers. There are 2 blue, 3 red, 4 green, and 5 yellow markers. Mr. DoBa randomly takes out two markers from the bag. The probability that these two markers are different colors can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$.
[i]Proposed by Raina Yang[/i]
2024 CMIMC Team, 7
In the national math league, there are $7$ teams. Their season is a round robin format, where each team plays other. Find the number of ways the games could go such that they have equal number of wins.
[i]Proposed by Ishin Shah[/i]
MOAA Team Rounds, 2021.12
Let $\triangle ABC$ have $AB=9$ and $AC=10$. A semicircle is inscribed in $\triangle ABC$ with its center on segment $BC$ such that it is tangent $AB$ at point $D$ and $AC$ at point $E$. If $AD=2DB$ and $r$ is the radius of the semicircle, $r^2$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m+n$.
[i]Proposed by Andy Xu[/i]
2019 CMIMC, 5
On Misha's new phone, a passlock consists of six circles arranged in a $2\times 3$ rectangle. The lock is opened by a continuous path connecting the six circles; the path cannot pass through a circle on the way between two others (e.g. the top left and right circles cannot be adjacent). For example, the left path shown below is allowed but the right path is not. (Paths are considered to be oriented, so that a path starting at $A$ and ending at $B$ is different from a path starting at $B$ and ending at $A$. However, in the diagrams below, the paths are valid/invalid regardless of orientation.) How many passlocks are there consisting of all six circles?
[asy]
size(270);
defaultpen(linewidth(0.8));
real r = 0.3, rad = 0.1, shift = 3.7;
pen th = linewidth(5)+gray(0.2);
for(int i=0; i<= 2;i=i+1)
{
for(int j=0; j<= 1;j=j+1)
{
fill(circle((i,j),r),gray(0.8));
fill(circle((i+shift,j),r),gray(0.8));
}
draw((0,1)--(2-rad,1)^^(2,1-rad)--(2,rad)^^(2-rad,0)--(0,0),th);
draw(arc((2-rad,1-rad),rad,0,90)^^arc((2-rad,rad),rad,270,360),th);
draw((shift+1,0)--(shift+1,1-2*rad)^^(shift+1-rad,1-rad)--(shift+rad,1-rad)^^(shift+rad,1+rad)--(shift+2,1+rad),th);
draw(arc((shift+1-rad,1-2*rad),rad,0,90)^^arc((shift+rad,1),rad,90,270),th);
}
[/asy]
MOAA Team Rounds, 2019.3
For how many ordered pairs of positive integers $(a, b)$ such that $a \le 50$ is it true that $x^2 - ax + b$ has integer roots?
MOAA Team Rounds, 2018.7
For a positive integer $k$, define the $k$-[i]pop[/i] of a positive integer $n$ as the infinite sequence of integers $a_1, a_2, ...$ such that $a_1 = n$ and $$a_{i+1}= \left\lfloor \frac{a_i}{k} \right\rfloor , i = 1, 2, ..$$
where $ \lfloor x\rfloor $ denotes the greatest integer less than or equal to $x$. Furthermore, define a positive integer $m$ to be $k$-[i]pop avoiding[/i] if $k$ does not divide any nonzero term in the $k$-pop of $m$. For example, $14$ is 3-pop avoiding because $3$ does not divide any nonzero term in the $3$-pop of $14$, which is $14, 4, 1, 0, 0, ....$ Suppose that the number of positive integers less than $13^{2018}$ which are $13$-pop avoiding is equal to N. What is the remainder when $N$ is divided by $1000$?
2022 CMIMC, 11
Let $\{\varepsilon_i\}_{i\ge 1}, \{\theta_i\}_{i\ge 0}$ be two infinite sequences of real numbers, such that $\varepsilon_i \in \{-1,1\}$ for all $i$, and the numbers $\theta_i$ obey$$\tan \theta_{n+1} = \tan \theta_{n}+\varepsilon_n \sec(\theta_{n})-\tan \theta_{n-1} , \qquad n \ge 1$$and $\theta_0 = \frac{\pi}{4}, \theta_1 = \frac{2\pi}{3}$. Compute the sum of all possible values of $$\lim_{m \to \infty} \left(\sum_{n=1}^m \frac{1}{\tan \theta_{n+1} + \tan \theta_{n-1}} + \tan \theta_m - \tan \theta_{m+1}\right)$$
[i]Proposed by Grant Yu[/i]
2017 CMIMC Team, 5
We have four registers, $R_1,R_2,R_3,R_4$, such that $R_i$ initially contains the number $i$ for $1\le i\le4$. We are allowed two operations:
[list]
[*] Simultaneously swap the contents of $R_1$ and $R_3$ as well as $R_2$ and $R_4$.
[*] Simultaneously transfer the contents of $R_2$ to $R_3$, the contents of $R_3$ to $R_4$, and the contents of $R_4$ to $R_2$. (For example if we do this once then $(R_1,R_2,R_3,R_4)=(1,4,2,3)$.)
[/list]
Using these two operations as many times as desired and in whatever order, what is the total number of possible outcomes?
2023 CMIMC Team, 7
Compute the value of
$$\sin^2\left(\frac{\pi}{7}\right) + \sin^2\left(\frac{3\pi}{7}\right) + \sin^2\left(\frac{5\pi}{7}\right).$$
Your answer should not involve any trigonometric functions.
[i]Proposed by Howard Halim[/i]
2019 CMIMC, 10
Let $\triangle ABC$ be a triangle with side lengths $a$, $b$, and $c$. Circle $\omega_A$ is the $A$-excircle of $\triangle ABC$, defined as the circle tangent to $BC$ and to the extensions of $AB$ and $AC$ past $B$ and $C$ respectively. Let $\mathcal{T}_A$ denote the triangle whose vertices are these three tangency points; denote $\mathcal{T}_B$ and $\mathcal{T}_C$ similarly. Suppose the areas of $\mathcal{T}_A$, $\mathcal{T}_B$, and $\mathcal{T}_C$ are $4$, $5$, and $6$ respectively. Find the ratio $a:b:c$.
MOAA Team Rounds, 2018.10
Vincent is playing a game with Evil Bill. The game uses an infinite number of red balls, an infinite number of green balls, and a very large bag. Vincent first picks two nonnegative integers $g$ and $k$ such that $g < k \le 2016$, and Evil Bill places $g$ green balls and $2016 - g$ red balls in the bag, so that there is a total of $2016$ balls in the bag. Vincent then picks a ball of either color and places it in the bag. Evil Bill then inspects the bag. If the ratio of green balls to total balls in the bag is ever exactly $\frac{k}{2016}$ , then Evil Bill wins. If the ratio of green balls to total balls is greater than $\frac{k}{2016}$ , then Vincent wins. Otherwise, Vincent and Evil Bill repeat the previous two actions (Vincent picks a ball and Evil Bill inspects the bag). If $S$ is the sum of all possible values of $k$ that Vincent could choose and be able to win, determine the largest prime factor of $S$.
2025 CMIMC Team, 3
Let $f(x)=x^4-4x^2+2.$ Find the smallest natural $n \in \mathbb{N}$ such that there exists $k,c \in \mathbb{N}$ with $$\left|f^k\left(\frac{n^2+1}{n}\right)-c^{144}\right| < \frac{1}{100}.$$
MOAA Team Rounds, 2019.4
Brandon wants to split his orchestra of $20$ violins, $15$ violas, $10$ cellos, and $5$ basses into three distinguishable groups, where all of the players of each instrument are indistinguishable. He wants each group to have at least one of each instrument and for each group to have more violins than violas, more violas than cellos, and more cellos than basses. How many ways are there for Brandon to split his orchestra following these conditions?
MOAA Team Rounds, 2021.18
Let $\triangle ABC$ be a triangle with side length $BC= 4\sqrt{6}$. Denote $\omega$ as the circumcircle of $\triangle{ABC}$. Point $D$ lies on $\omega$ such that $AD$ is the diameter of $\omega$. Let $N$ be the midpoint of arc $BC$ that contains $A$. $H$ is the intersection of the altitudes in $\triangle{ABC}$ and it is given that $HN = HD= 6$. If the area of $\triangle{ABC}$ can be expressed as $\frac{a\sqrt{b}}{c}$, where $a,b,c$ are positive integers with $a$ and $c$ relatively prime and $b$ not divisible by the square of any prime, compute $a+b+c$.
[i]Proposed by Andy Xu[/i]
2021 MOAA, 6
Find the sum of all two-digit prime numbers whose digits are also both prime numbers.
[i]Proposed by Nathan Xiong[/i]
2018 CMIMC Team, 3-1/3-2
Let $\Omega$ be a semicircle with endpoints $A$ and $B$ and diameter 3. Points $X$ and $Y$ are located on the boundary of $\Omega$ such that the distance from $X$ to $AB$ is $\frac{5}{4}$ and the distance from $Y$ to $AB$ is $\frac{1}{4}$. Compute \[(AX+BX)^2 - (AY+BY)^2.\]
Let $T = TNYWR$. $T$ people each put a distinct marble into a bag; its contents are mixed randomly and one marble is distributed back to each person. Given that at least one person got their own marble back, what is the probability that everyone else also received their own marble?
2023 CMIMC Team, 3
Find the number of ordered triples of positive integers $(a,b,c),$ where $1 \leq a,b,c \leq 10,$ with the property that $\gcd(a,b), \gcd(a,c),$ and $\gcd(b,c)$ are all pairwise relatively prime.
[i]Proposed by Kyle Lee[/i]
2024 HMNT, 2
Compute the sum of all positive integers $x$ such that $(x-17)\sqrt{x-1}+(x-1)\sqrt{x+15}$ is an integer.
2017 CMIMC Team, 1
Find the integer $n$ such that
\[n + \left\lfloor\sqrt{n}\right\rfloor + \left\lfloor\sqrt{\sqrt{n}}\right\rfloor = 2017.\] Here, as usual, $\lfloor\cdot\rfloor$ denotes the floor function.
2025 CMIMC Team, 5
Suppose we have a uniformly random function from $\{1, 2, 3, \ldots, 25\}$ to itself. Find the expected value of $$\sum_{x=1}^{25} (f(f(x))-x)^2.$$
2025 Harvard-MIT Mathematics Tournament, 1
Let $a,b,$ and $c$ be pairwise distinct positive integers such that $\tfrac{1}{a}, \tfrac{1}{b}, \tfrac{1}{c}$ is an increasing arithmetic sequence in that order. Prove that $\gcd(a,b)>1.$
2018 MOAA, 9
Quadrilateral $ABCD$ with $AC = 800$ is inscribed in a circle, and $E, W, X, Y, Z$ are the midpoints of segments $BD$, $AB$, $BC$, $CD$, $DA$, respectively. If the circumcenters of $EW Z$ and $EXY$ are $O_1$ and $O_2$, respectively, determine $O_1O_2$.
2019 CMIMC, 3
Points $A(0,0)$ and $B(1,1)$ are located on the parabola $y=x^2$. A third point $C$ is positioned on this parabola between $A$ and $B$ such that $AC=CB=r$. What is $r^2$?
2021 MOAA, 11
Find the product of all possible real values for $k$ such that the system of equations
$$x^2+y^2= 80$$
$$x^2+y^2= k+2x-8y$$
has exactly one real solution $(x,y)$.
[i]Proposed by Nathan Xiong[/i]