This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

2015 Math Prize for Girls Olympiad, 2

A tetrahedron $T$ is inside a cube $C$. Prove that the volume of $T$ is at most one-third the volume of $C$.

Estonia Open Senior - geometry, 1995.1.3

We call a tetrahedron a "trirectangular " if it has a vertex (we call this is called a "right-angled" vertex) in which the planes of the three sides of the tetrahedron intersect at right angles. Prove the "three-dimensional Pythagorean theorem": The square of the area of the opposite face of the "right-angled" vertex of the ""trirectangular " tetrahedron is equal to the sum of the squares of the areas of three other sides of the tetrahedron .

1987 AIME Problems, 3

By a proper divisor of a natural number we mean a positive integral divisor other than 1 and the number itself. A natural number greater than 1 will be called "nice" if it is equal to the product of its distinct proper divisors. What is the sum of the first ten nice numbers?

1983 National High School Mathematics League, 4

In a tetrahedron, lengths of six edges are $2,3,3,4,5,5$. Find its largest volume.

1997 Vietnam Team Selection Test, 1

Let $ ABCD$ be a given tetrahedron, with $ BC \equal{} a$, $ CA \equal{} b$, $ AB \equal{} c$, $ DA \equal{} a_1$, $ DB \equal{} b_1$, $ DC \equal{} c_1$. Prove that there is a unique point $ P$ satisfying \[ PA^2 \plus{} a_1^2 \plus{} b^2 \plus{} c^2 \equal{} PB^2 \plus{} b_1^2 \plus{} c^2 \plus{} a^2 \equal{} PC^2 \plus{} c_1^2 \plus{} a^2 \plus{} b^2 \equal{} PD^2 \plus{} a_1^2 \plus{} b_1^2 \plus{} c_1^2 \] and for this point $ P$ we have $ PA^2 \plus{} PB^2 \plus{} PC^2 \plus{} PD^2 \ge 4R^2$, where $ R$ is the circumradius of the tetrahedron $ ABCD$. Find the necessary and sufficient condition so that this inequality is an equality.

1960 Poland - Second Round, 6

Calculate the volume of the tetrahedron $ ABCD $ given the edges $ AB = b $, $ AC = c $, $ AD = d $ and the angles $ \measuredangle CAD = \beta $, $ \measuredangle DAB = \gamma $ and $ \measuredangle BAC = \delta$.

1986 Poland - Second Round, 3

Let S be a sphere cirucmscribed on a regular tetrahedron with an edge length greater than 1. The sphere $ S $ is represented as the sum of four sets. Prove that one of these sets includes points $ P $, $ Q $ such that the length of the segment $ PQ $ exceeds 1.

2019 CMIMC, 4

Suppose $\mathcal{T}=A_0A_1A_2A_3$ is a tetrahedron with $\angle A_1A_0A_3 = \angle A_2A_0A_1 = \angle A_3A_0A_2 = 90^\circ$, $A_0A_1=5, A_0A_2=12$ and $A_0A_3=9$. A cube $A_0B_0C_0D_0E_0F_0G_0H_0$ with side length $s$ is inscribed inside $\mathcal{T}$ with $B_0\in \overline{A_0A_1}, D_0 \in \overline{A_0A_2}, E_0 \in \overline{A_0A_3}$, and $G_0\in \triangle A_1A_2A_3$; what is $s$?

1993 Baltic Way, 20

Let $ \mathcal Q$ be a unit cube. We say that a tetrahedron is [b]good[/b] if all its edges are equal and all of its vertices lie on the boundary of $ \mathcal Q$. Find all possible volumes of good tetrahedra.

1997 Israel Grosman Mathematical Olympiad, 4

Prove that if two altitudes of a tetrahedron intersect, then so do the other two altitudes.

2016 SDMO (Middle School), 4

There is an infinitely tall tetrahedral stack of spheres where each row of the tetrahedron consists of a triangular arrangement of spheres, as shown below. There is $1$ sphere in the top row (which we will call row $0$), $3$ spheres in row $1$, $6$ spheres in row $2$, $10$ spheres in row $3$, etc. The top-most sphere in row $0$ is assigned the number $1$. We then assign each other sphere the sum of the number(s) assigned to the sphere(s) which touch it in the row directly above it. Find a simplified expression in terms of $n$ for the sum of the numbers assigned to each sphere from row $0$ to row $n$. [asy] import three; import solids; size(8cm); //currentprojection = perspective(1, 1, 10); triple backright = (-2, 0, 0), backleft = (-1, -sqrt(3), 0), backup = (-1, -sqrt(3) / 3, 2 * sqrt(6) / 3); draw(shift(2 * backleft) * surface(sphere(1,20)), white); //2 draw(shift(backleft + backright) * surface(sphere(1,20)), white); //2 draw(shift(2 * backright) * surface(sphere(1,20)), white); //3 draw(shift(backup + backleft) * surface(sphere(1,20)), white); draw(shift(backup + backright) * surface(sphere(1,20)), white); draw(shift(2 * backup) * surface(sphere(1,20)), white); draw(shift(backleft) * surface(sphere(1,20)), white); draw(shift(backright) * surface(sphere(1,20)), white); draw(shift(backup) * surface(sphere(1,20)), white); draw(surface(sphere(1,20)), white); label("Row 0", 2 * backup, 15 * dir(20)); label("Row 1", backup, 25 * dir(20)); label("Row 2", O, 35 * dir(20)); dot(-backup); dot(-7 * backup / 8); dot(-6 * backup / 8); dot((backleft - backup) + backleft * 2); dot(5 * (backleft - backup) / 4 + backleft * 2); dot(6 * (backleft - backup) / 4 + backleft * 2); dot((backright - backup) + backright * 2); dot(5 * (backright - backup) / 4 + backright * 2); dot(6 * (backright - backup) / 4 + backright * 2); [/asy]

1990 IMO Longlists, 63

Let $ P$ be a point inside a regular tetrahedron $ T$ of unit volume. The four planes passing through $ P$ and parallel to the faces of $ T$ partition $ T$ into 14 pieces. Let $ f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $ f(P)$ as $ P$ varies over $ T.$

2019 BMT Spring, 9

Let $ ABCD $ be a tetrahedron with $ \angle ABC = \angle ABD = \angle CBD = 90^\circ $ and $ AB = BC $. Let $ E, F, G $ be points on $ \overline{AD} $, $ BD $, and $ \overline{CD} $, respectively, such that each of the quadrilaterals $ AEFB $, $ BFGC $, and $ CGEA $ have an inscribed circle. Let $ r $ be the smallest real number such that $ \dfrac{[\triangle EFG]}{[\triangle ABC]} \leq r $ for all such configurations $ A, B, C, D, E, F, G $. If $ r $ can be expressed as $ \dfrac{\sqrt{a - b\sqrt{c}}}{d} $ where $ a, b, c, d $ are positive integers with $ \gcd(a, b) $ squarefree and $ c $ squarefree, find $ a + b + c + d $. Note: Here, $ [P] $ denotes the area of polygon $ P $. (This wasn't in the original test; instead they used the notation $ \text{area}(P) $, which is clear but frankly cumbersome. :P)

2013 Baltic Way, 13

All faces of a tetrahedron are right-angled triangles. It is known that three of its edges have the same length $s$. Find the volume of the tetrahedron.

1967 IMO Shortlist, 2

Let $ABCD$ be a regular tetrahedron. To an arbitrary point $M$ on one edge, say $CD$, corresponds the point $P = P(M)$ which is the intersection of two lines $AH$ and $BK$, drawn from $A$ orthogonally to $BM$ and from $B$ orthogonally to $AM$. What is the locus of $P$ when $M$ varies ?

1985 IMO Longlists, 95

Prove that for every point $M$ on the surface of a regular tetrahedron there exists a point $M'$ such that there are at least three different curves on the surface joining $M$ to $M'$ with the smallest possible length among all curves on the surface joining $M$ to $M'$.

1967 IMO Longlists, 26

Let $ABCD$ be a regular tetrahedron. To an arbitrary point $M$ on one edge, say $CD$, corresponds the point $P = P(M)$ which is the intersection of two lines $AH$ and $BK$, drawn from $A$ orthogonally to $BM$ and from $B$ orthogonally to $AM$. What is the locus of $P$ when $M$ varies ?

1990 Vietnam National Olympiad, 3

A tetrahedron is to be cut by three planes which form a parallelepiped whose three faces and all vertices lie on the surface of the tetrahedron. (a) Can this be done so that the volume of the parallelepiped is at least $ \frac{9}{40}$ of the volume of the tetrahedron? (b) Determine the common point of the three planes if the volume of the parallelepiped is $ \frac{11}{50}$ of the volume of the tetrahedron.

2003 Iran MO (3rd Round), 18

In tetrahedron $ ABCD$, radius four circumcircles of four faces are equal. Prove that $ AB\equal{}CD$, $ AC\equal{}BD$ and $ AD\equal{}BC$.

2020 German National Olympiad, 6

The insphere and the exsphere opposite to the vertex $D$ of a (not necessarily regular) tetrahedron $ABCD$ touch the face $ABC$ in the points $X$ and $Y$, respectively. Show that $\measuredangle XAB=\measuredangle CAY$.

1986 IMO Shortlist, 19

A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$

1986 French Mathematical Olympiad, Problem 1

Let $ABCD$ be a tetrahedron. (a) Prove that the midpoints of the edges $AB,AC,BD$, and $CD$ lie in a plane. (b) Find the point in that plane, whose sum of distances from the lines $AD$ and $BC$ is minimal.

1964 Polish MO Finals, 3

Given a tetrahedron $ ABCD $ whose edges $ AB, BC, CD, DA $ are tangent to a certain sphere. Prove that the points of tangency lie in the same plane.

2007 Moldova National Olympiad, 11.7

Given a tetrahedron $VABC$ with edges $VA$, $VB$ and $VC$ perpendicular any two of them. The sum of the lengths of the tetrahedron's edges is $3p$. Find the maximal volume of $VABC$.

1991 IMO Shortlist, 7

$ ABCD$ is a terahedron: $ AD\plus{}BD\equal{}AC\plus{}BC,$ $ BD\plus{}CD\equal{}BA\plus{}CA,$ $ CD\plus{}AD\equal{}CB\plus{}AB,$ $ M,N,P$ are the mid points of $ BC,CA,AB.$ $ OA\equal{}OB\equal{}OC\equal{}OD.$ Prove that $ \angle MOP \equal{} \angle NOP \equal{}\angle NOM.$