This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 80

2006 Singapore Junior Math Olympiad, 5

You have a large number of congruent equilateral triangular tiles on a table and you want to fit $n$ of them together to make a convex equiangular hexagon (i.e. one whose interior angles are $120^o$) . Obviously, $n$ cannot be any positive integer. The first three feasible $n$ are $6, 10$ and $13$. Show that $12$ is not feasible but $14$ is.

2018 Argentina National Olympiad, 3

You have a $7\times 7$ board divided into $49$ boxes. Mateo places a coin in a box. a) Prove that Mateo can place the coin so that it is impossible for Emi to completely cover the $48$ remaining squares, without gaps or overlaps, using $15$ $3\times1$ rectangles and a cubit of three squares, like those in the figure. [img]https://cdn.artofproblemsolving.com/attachments/6/9/a467439094376cd95c6dfe3e2ad3e16fe9f124.png[/img] b) Prove that no matter which square Mateo places the coin in, Emi will always be able to cover the 48 remaining squares using $14$ $3\times1$ rectangles and two cubits of three squares.

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n\times n$ ($10 <n <20$) with two types of tiles: $2 \times 2$ and $5\times 1$. It turned out that they were able to completely lay the floor so that the same number of tiles of each type was used. For which $n$ could this happen? (You can’t cut tiles and also put them on top of each other.)

2000 Chile National Olympiad, 6

With $76$ tiles, of which some are white, other blue and the remaining red, they form a rectangle of $4 \times 19$. Show that there is a rectangle, inside the largest, that has its vertices of the same color.

2014 Czech-Polish-Slovak Junior Match, 3

We have $10$ identical tiles as shown. The tiles can be rotated, but not flipper over. A $7 \times 7$ board should be covered with these tiles so that exactly one unit square is covered by two tiles and all other fields by one tile. Designate all unit sqaures that can be covered with two tiles. [img]https://cdn.artofproblemsolving.com/attachments/d/5/6602a5c9e99126bd656f997dee3657348d98b5.png[/img]