This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 235

2002 AIME Problems, 13

In triangle $ABC,$ point $D$ is on $\overline{BC}$ with $CD=2$ and $DB=5,$ point $E$ is on $\overline{AC}$ with $CE=1$ and $EA=3,$ $AB=8,$ and $\overline{AD}$ and $\overline{BE}$ intersect at $P.$ Points $Q$ and $R$ lie on $\overline{AB}$ so that $\overline{PQ}$ is parallel to $\overline{CA}$ and $\overline{PR}$ is parallel to $\overline{CB}.$ It is given that the ratio of the area of triangle $PQR$ to the area of triangle $ABC$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2003 Tournament Of Towns, 2

Triangle $ABC$ is given. Prove that $\frac{R}{r} > \frac{a}{h}$, where $R$ is the radius of the circumscribed circle, $r$ is the radius of the inscribed circle, $a$ is the length of the longest side, $h$ is the length of the shortest altitude.

1985 IMO Longlists, 7

A convex quadrilateral is inscribed in a circle of radius $1$. Prove that the difference between its perimeter and the sum of the lengths of its diagonals is greater than zero and less than $2.$

2010 Germany Team Selection Test, 1

Find the largest possible integer $k$, such that the following statement is true: Let $2009$ arbitrary non-degenerated triangles be given. In every triangle the three sides are coloured, such that one is blue, one is red and one is white. Now, for every colour separately, let us sort the lengths of the sides. We obtain \[ \left. \begin{array}{rcl} & b_1 \leq b_2\leq\ldots\leq b_{2009} & \textrm{the lengths of the blue sides }\\ & r_1 \leq r_2\leq\ldots\leq r_{2009} & \textrm{the lengths of the red sides }\\ \textrm{and } & w_1 \leq w_2\leq\ldots\leq w_{2009} & \textrm{the lengths of the white sides }\\ \end{array}\right.\] Then there exist $k$ indices $j$ such that we can form a non-degenerated triangle with side lengths $b_j$, $r_j$, $w_j$. [i]Proposed by Michal Rolinek, Czech Republic[/i]

2019 Tournament Of Towns, 2

Two acute triangles $ABC$ and $A_1B_1C_1$ are such that $B_1$ and $C_1$ lie on $BC$, and $A_1$ lies inside the triangle $ABC$. Let $S$ and $S_1$ be the areas of those triangles respectively. Prove that $\frac{S}{AB + AC}> \frac{S_1}{A_1B_1 + A_1C_1}$ (Nairi Sedrakyan, Ilya Bogdanov)

1991 Spain Mathematical Olympiad, 3

What condition must be satisfied by the coefficients $u,v,w$ if the roots of the polynomial $x^3 -ux^2+vx-w$ are the sides of a triangle

2005 China Team Selection Test, 3

Let $n$ be a positive integer, and $a_j$, for $j=1,2,\ldots,n$ are complex numbers. Suppose $I$ is an arbitrary nonempty subset of $\{1,2,\ldots,n\}$, the inequality $\left|-1+ \prod_{j\in I} (1+a_j) \right| \leq \frac 12$ always holds. Prove that $\sum_{j=1}^n |a_j| \leq 3$.

II Soros Olympiad 1995 - 96 (Russia), 10.3

Each side of an acute triangle is multiplied by the cosine of the opposite angle. a) Prove that a triangle can be formed from the resulting segments. 6) Find the radius of the circle circumscribed around the resulting triangle if the radius of the circle circumscribed around the original triangle is equal to $R$.

2011 Gheorghe Vranceanu, 2

Let $ a\ge 3 $ and a polynom $ P. $ Show that: $$ \max_{1\le k\le \text{grad} P} \left| a^{k-1}-P(k-1) \right| \ge 1 $$

2014 HMNT, 3

The side lengths of a triangle are distinct positive integers. One of the side lengths is a multiple of $42,$ and another is a multiple of $72$. What is the minimum possible length of the third side?

2020 Novosibirsk Oral Olympiad in Geometry, 2

It is known that four of these sticks can be assembled into a quadrilateral. Is it always true that you can make a triangle out of three of them?

1966 IMO Longlists, 32

The side lengths $a,$ $b,$ $c$ of a triangle $ABC$ form an arithmetical progression (such that $b-a=c-b$). The side lengths $a_{1},$ $b_{1},$ $c_{1}$ of a triangle $A_{1}B_{1}C_{1}$ also form an arithmetical progression (with $b_{1}-a_{1}=c_{1}-b_{1}$). [Hereby, $a=BC,$ $b=CA,$ $c=AB, $ $a_{1}=B_{1}C_{1},$ $b_{1}=C_{1}A_{1},$ $c_{1}=A_{1}B_{1}.$] Moreover, we know that $\measuredangle CAB=\measuredangle C_{1}A_{1}B_{1}.$ Show that triangles $ABC$ and $A_{1}B_{1}C_{1}$ are similar.

1990 India Regional Mathematical Olympiad, 5

$P$ is any point inside a triangle $ABC$. The perimeter of the triangle $AB + BC + Ca = 2s$. Prove that $s < AP +BP +CP < 2s$.

2009 AMC 10, 12

In quadrilateral $ ABCD$, $ AB \equal{} 5$, $ BC \equal{} 17$, $ CD \equal{} 5$, $ DA \equal{} 9$, and $ BD$ is an integer. What is $ BD$? [asy]unitsize(4mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair C=(0,0), B=(17,0); pair D=intersectionpoints(Circle(C,5),Circle(B,13))[0]; pair A=intersectionpoints(Circle(D,9),Circle(B,5))[0]; pair[] dotted={A,B,C,D}; draw(D--A--B--C--D--B); dot(dotted); label("$D$",D,NW); label("$C$",C,W); label("$B$",B,E); label("$A$",A,NE);[/asy]$ \textbf{(A)}\ 11 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 14 \qquad \textbf{(E)}\ 15$

2007 Cuba MO, 9

Let $O$ be the circumcircle of $\triangle ABC$, with $AC=BC$ end let $D=AO\cap BC$. If $BD$ and $CD$ are integer numbers and $AO-CD$ is prime, determine such three numbers.

2001 Austrian-Polish Competition, 3

Let $a,b,c$ be sides of a triangle. Prove that \[ 2 < \frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} - \frac{a^3+b^3+c^3}{abc}\leq 3 \]

1986 IMO Longlists, 66

One hundred red points and one hundred blue points are chosen in the plane, no three of them lying on a line. Show that these points can be connected pairwise, red ones with blue ones, by disjoint line segments.

1983 IMO Longlists, 66

Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a \minus{} b) \plus{} b^{2}c(b \minus{} c) \plus{} c^{2}a(c \minus{} a)\ge 0. \] Determine when equality occurs.

2007 Brazil National Olympiad, 3

Consider $ n$ points in a plane which are vertices of a convex polygon. Prove that the set of the lengths of the sides and the diagonals of the polygon has at least $ \lfloor n/2\rfloor$ elements.

2005 Germany Team Selection Test, 3

Let ABC be a triangle and let $r, r_a, r_b, r_c$ denote the inradius and ex-radii opposite to the vertices $A, B, C$, respectively. Suppose that $a>r_a, b>r_b, c>r_c$. Prove that [b](a)[/b] $\triangle ABC$ is acute. [b](b)[/b] $a+b+c > r+r_a+r_b+r_c$.

2005 France Team Selection Test, 6

Let $P$ be a polynom of degree $n \geq 5$ with integer coefficients given by $P(x)=a_{n}x^n+a_{n-1}x^{n-1}+\cdots+a_0 \quad$ with $a_i \in \mathbb{Z}$, $a_n \neq 0$. Suppose that $P$ has $n$ different integer roots (elements of $\mathbb{Z}$) : $0,\alpha_2,\ldots,\alpha_n$. Find all integers $k \in \mathbb{Z}$ such that $P(P(k))=0$.

2009 Indonesia TST, 2

Given a triangle $ \,ABC,\,$ let $ \,I\,$ be the center of its inscribed circle. The internal bisectors of the angles $ \,A,B,C\,$ meet the opposite sides in $ \,A^{\prime },B^{\prime },C^{\prime }\,$ respectively. Prove that \[ \frac {1}{4} < \frac {AI\cdot BI\cdot CI}{AA^{\prime }\cdot BB^{\prime }\cdot CC^{\prime }} \leq \frac {8}{27}. \]

2012 Brazil Team Selection Test, 4

Prove that for every positive integer $n,$ the set $\{2,3,4,\ldots,3n+1\}$ can be partitioned into $n$ triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle. [i]Proposed by Canada[/i]

2014 Math Prize For Girls Problems, 14

A triangle has area 114 and sides of integer length. What is the perimeter of the triangle?

2014 IFYM, Sozopol, 8

Prove that, if $a,b,c$ are sides of a triangle, then we have the following inequality: $3(a^3 b+b^3 c+c^3 a)+2(ab^3+bc^3+ca^3 )\geq 5(a^2 b^2+a^2 c^2+b^2 c^2 )$.