Found problems: 55
1959 IMO, 3
Let $a,b,c$ be real numbers. Consider the quadratic equation in $\cos{x}$ \[ a \cos^2{x}+b \cos{x}+c=0. \] Using the numbers $a,b,c$ form a quadratic equation in $\cos{2x}$ whose roots are the same as those of the original equation. Compare the equation in $\cos{x}$ and $\cos{2x}$ for $a=4$, $b=2$, $c=-1$.
1966 IMO Shortlist, 18
Solve the equation $\frac{1}{\sin x}+\frac{1}{\cos x}=\frac 1p$ where $p$ is a real parameter.
Discuss for which values of $p$ the equation has at least one real solution and determine the number of solutions in $[0, 2\pi)$ for a given $p.$
1969 Vietnam National Olympiad, 2
Find all real $x$ such that $0 < x < \pi $ and $\frac{8}{3 sin x - sin 3x} + 3 sin^2x \le 5$.
1966 IMO Longlists, 9
Find $x$ such that trigonometric
\[\frac{\sin 3x \cos (60^\circ -4x)+1}{\sin(60^\circ - 7x) - \cos(30^\circ + x) + m}=0\]
where $m$ is a fixed real number.
1966 IMO Longlists, 59
Let $a,b,c$ be the lengths of the sides of a triangle, and $\alpha, \beta, \gamma$ respectively, the angles opposite these sides. Prove that if \[ a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) \] the triangle is isosceles.
1967 IMO Longlists, 15
Suppose $\tan \alpha = \dfrac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. Prove that the number $\tan \beta$ for which $\tan {2 \beta} = \tan {3 \alpha}$ is rational only when $p^2 + q^2$ is the square of an integer.
1977 Vietnam National Olympiad, 2
Show that there are $1977$ non-similar triangles such that the angles $A, B, C$ satisfy $\frac{\sin A + \sin B + \sin C}{\cos A +\cos B + \cos C} = \frac{12}{7}$ and $\sin A \sin B \sin C = \frac{12}{25}$.
1983 IMO Longlists, 63
Let $n$ be a positive integer having at least two different prime factors. Show that there exists a permutation $a_1, a_2, \dots , a_n$ of the integers $1, 2, \dots , n$ such that
\[\sum_{k=1}^{n} k \cdot \cos \frac{2 \pi a_k}{n}=0.\]
1969 IMO Shortlist, 10
$(BUL 4)$ Let $M$ be the point inside the right-angled triangle $ABC (\angle C = 90^{\circ})$ such that $\angle MAB = \angle MBC = \angle MCA =\phi.$ Let $\Psi$ be the acute angle between the medians of $AC$ and $BC.$ Prove that $\frac{\sin(\phi+\Psi)}{\sin(\phi-\Psi)}= 5.$
2005 Iran MO (3rd Round), 4
Suppose in triangle $ABC$ incircle touches the side $BC$ at $P$ and $\angle APB=\alpha$. Prove that : \[\frac1{p-b}+\frac1{p-c}=\frac2{rtg\alpha}\]
1962 IMO, 4
Solve the equation $\cos^2{x}+\cos^2{2x}+\cos^2{3x}=1$
2007 Bulgarian Autumn Math Competition, Problem 12.1
Determine the values of the real parameter $a$, such that the equation
\[\sin 2x\sin 4x-\sin x\sin 3x=a\]
has a unique solution in the interval $[0,\pi)$.
1959 IMO Shortlist, 3
Let $a,b,c$ be real numbers. Consider the quadratic equation in $\cos{x}$ \[ a \cos^2{x}+b \cos{x}+c=0. \] Using the numbers $a,b,c$ form a quadratic equation in $\cos{2x}$ whose roots are the same as those of the original equation. Compare the equation in $\cos{x}$ and $\cos{2x}$ for $a=4$, $b=2$, $c=-1$.
1967 IMO Shortlist, 3
Suppose $\tan \alpha = \dfrac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$. Prove that the number $\tan \beta$ for which $\tan {2 \beta} = \tan {3 \alpha}$ is rational only when $p^2 + q^2$ is the square of an integer.
2015 Mathematical Talent Reward Programme, MCQ: P 12
Maximum value of $\sin^4\theta +\cos^6\theta $ will be ?
[list=1]
[*] $\frac{1}{2\sqrt{2}}$
[*] $\frac{1}{2}$
[*] $\frac{1}{\sqrt{2}}$
[*] 1
[/list]
1985 Spain Mathematical Olympiad, 3
Solve the equation $tan^2 2x+2 tan2x tan3x = 1$
1972 IMO Longlists, 30
Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc.
(a) Prove the relation
\[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \]
where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that
\[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\]
(b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.
2007 Bulgarian Autumn Math Competition, Problem 11.1
Let $0<\alpha,\beta<\frac{\pi}{2}$ which satisfy
\[(\cos^2\alpha+\cos^2\beta)(1+\tan\alpha\tan\beta)=2\]
Prove that $\alpha+\beta=\frac{\pi}{2}$.
1969 IMO Longlists, 29
$(GDR 1)$ Find all real numbers $\lambda$ such that the equation $\sin^4 x - \cos^4 x = \lambda(\tan^4 x - \cot^4 x)$
$(a)$ has no solution,
$(b)$ has exactly one solution,
$(c)$ has exactly two solutions,
$(d)$ has more than two solutions (in the interval $(0, \frac{\pi}{4}).$
1956 Czech and Slovak Olympiad III A, 1
Find all $x,y\in\left(0,\frac{\pi}{2}\right)$ such that
\begin{align*}
\frac{\cos x}{\cos y}&=2\cos^2 y, \\
\frac{\sin x}{\sin y}&=2\sin^2 y.
\end{align*}
2009 Kyiv Mathematical Festival, 1
Solve the equation $\big(2cos(x-\frac{\pi}{4})+tgx\big)^3=54 sin^2x$, $x\in \big[0,\frac{\pi}{2}\big)$
2016 Indonesia MO, 4
Given triangle $ABC$ such that angles $A$, $B$, $C$ satisfy
\[
\frac{\cos A}{20}+\frac{\cos B}{21}+\frac{\cos C}{29}=\frac{29}{420}
\]
Prove that $ABC$ is right angled triangle
1963 IMO, 5
Prove that $\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}$
2017 Latvia Baltic Way TST, 2
Find all pairs of real numbers $(x, y)$ that satisfy the equation
$$\frac{(x+y)(2-\sin(x+y))}{4\sin^2(x+y)}=\frac{xy}{x+y}$$
1972 IMO Shortlist, 11
Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc.
(a) Prove the relation
\[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \]
where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that
\[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\]
(b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.