This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 109

1985 Brazil National Olympiad, 4

$a, b, c, d$ are integers. Show that $x^2 + ax + b = y^2 + cy + d$ has infinitely many integer solutions iff $a^2 - 4b = c^2 - 4d$.

2006 All-Russian Olympiad Regional Round, 11.2

Product of square trinomials $x^2 - a_1x + b_1$, $x^2 - a_2x + b_2$, $...$, $x^2-a_nx + b_n$ is equal to the polynomial $P(x) = x^{2n} +c_1x^{2n-1} +c_2x^{2n-2} +...+ c_{2n-1}x + c_{2n}$, where the coefficients are $c_1$, $c_2$, $...$ , $c_{2n}$ are positive. Show that for some $k$ ($1\le k \le n$) the coefficients $a_k$ and $b_k$ are positive.

2012 Dutch BxMO/EGMO TST, 1

Do there exist quadratic polynomials $P(x)$ and $Q(x)$ with real coeffcients such that the polynomial $P(Q(x))$ has precisely the zeros $x = 2, x = 3, x =5$ and $x = 7$?

2013 Cuba MO, 1

Tags: trinomial , algebra
Cris has the equation $-2x^2 + bx + c = 0$, and Cristian increases the coefficients of the Cris equation by $1$, obtaining the equation $-x^2 + (b + 1) x + (c + 1) = 0$. Mariloli notices that the real solutions of the Cristian's equation are the squares of the real solutions of the Cris equation. Find all possible values that can take the coefficients $b$ and $c$.

2019 Lusophon Mathematical Olympiad, 2

Prove that for every $n$ nonzero integer , there are infinite triples of nonzero integers $a, b$ and $c$ that satisfy the conditions: 1. $a + b + c = n$ 2. $ax^2 + bx + c = 0$ has rational roots.

1973 All Soviet Union Mathematical Olympiad, 178

The real numbers $a,b,c$ satisfy the condition: for all $x$, such that for $ -1 \le x \le 1$, the inequality $$| ax^2 + bx + c | \le 1$$ is held. Prove that for the same $x$ , $$| cx^2 + bx + a | \le 2$$

1999 Estonia National Olympiad, 2

Find all values of $a$ such that absolute value of one of the roots of the equation $x^2 + (a - 2)x - 2a^2 + 5a - 3 = 0$ is twice of absolute value of the other root.

2019 Azerbaijan Junior NMO, 1

A $6\times6$ square is given, and a quadratic trinomial with a positive leading coefficient is placed in each of its cells. There are $108$ coefficents in total, and these coefficents are chosen from the set $[-66;47]$, and each coefficient is different from each other. Prove that there exists at least one column such that the polynomial you get by summing the six trinomials in that column has a real root.

1996 All-Russian Olympiad Regional Round, 9.1

Tags: algebra , trinomial
Find all pairs of square trinomials $x^2 + ax + b$, $ x^2 + cx + d$ such that $a$ and $b$ are the roots of the second trinomial, $c$ and $d$ are the roots of the first.

2018 Istmo Centroamericano MO, 4

Let $t$ be an integer. Suppose the equation $$x^2 + (4t - 1) x + 4t^2 = 0$$ has at least one positive integer solution $n$. Show that $n$ is a perfect square.

2015 Indonesia MO Shortlist, N2

Suppose that $a, b$ are natural numbers so that all the roots of $x^2 + ax - b$ and $x^2 - ax + b$ are integers. Show that exists a right triangle with integer sides, with $a$ the length of the hypotenuse and $b$ the area .

1969 All Soviet Union Mathematical Olympiad, 119

Tags: algebra , trinomial
For what minimal natural $a$ the polynomial $ax^2 + bx + c$ with the integer $c$ and $b$ has two different positive roots both less than one.

1998 Romania National Olympiad, 1

Find the integer numbers $a, b, c$ such that the function $f: R \to R$, $f(x) = ax^2 +bx + c$ satisfies the equalities : $$f(f(1) ))= f (f(2 ) )= f(f (3 ))$$

1976 Dutch Mathematical Olympiad, 4

For $a,b, x \in R$ holds: $x^2 - (2a^2 + 4)x + a^2 + 2a + b = 0$. For which $b$ does this equation have at least one root between $0$ and $1$ for all $a$?

2014 India PRMO, 9

Tags: root , trinomial , algebra
Natural numbers $k, l,p$ and $q$ are such that if $a$ and $b$ are roots of $x^2 - kx + l = 0$ then $a +\frac1b$ and $b + \frac1a$ are the roots of $x^2 -px + q = 0$. What is the sum of all possible values of $q$?

1949-56 Chisinau City MO, 17

Prove that if the roots of the equation $x^2 + px + q = 0$ are real, then for any real number $a$ the roots of the equation $$x^2 + px + q + (x + a) (2x + p) = 0$$ are also real.

2017 Hanoi Open Mathematics Competitions, 10

Find all non-negative integers $a, b, c$ such that the roots of equations: $\begin{cases}x^2 - 2ax + b = 0 \\ x^2- 2bx + c = 0 \\ x^2 - 2cx + a = 0 \end{cases}$ are non-negative integers.

2005 Czech And Slovak Olympiad III A, 5

Let $p,q, r, s$ be real numbers with $q \ne -1$ and $s \ne -1$. Prove that the quadratic equations $x^2 + px+q = 0$ and $x^2 +rx+s = 0$ have a common root, while their other roots are inverse of each other, if and only if $pr = (q+1)(s+1)$ and $p(q+1)s = r(s+1)q$. (A double root is counted twice.)

2013 Poland - Second Round, 1

Let $b$, $c$ be integers and $f(x) = x^2 + bx + c$ be a trinomial. Prove, that if for integers $k_1$, $k_2$ and $k_3$ values of $f(k_1)$, $f(k_2)$ and $f(k_3)$ are divisible by integer $n \neq 0$, then product $(k_1 - k_2)(k_2 - k_3)(k_3 - k_1)$ is divisible by $n$ too.

1979 Chisinau City MO, 171

Tags: trinomial , algebra
Are there numbers $a, b$ such that $| a -b |\le 1979$ and the equation $ax^2 + (a + b) x + b = x$ has no roots?

2011 Brazil Team Selection Test, 1

Let $P_1$, $P_2$ and $P_3$ be polynomials of degree two with positive coefficient leader and real roots . Prove that if each pair of polynomials has a common root , then the polynomial $P_1 + P_2 + P_3$ has also real roots.

2010 Dutch IMO TST, 5

The polynomial $A(x) = x^2 + ax + b$ with integer coefficients has the following property: for each prime $p$ there is an integer $k$ such that $A(k)$ and $A(k + 1)$ are both divisible by $p$. Proof that there is an integer $m$ such that $A(m) = A(m + 1) = 0$.

1954 Moscow Mathematical Olympiad, 285

The absolute values of all roots of the quadratic equation $x^2+Ax+B = 0$ and $x^2+Cx+D = 0$ are less then $1$. Prove that so are absolute values of the roots of the quadratic equation $x^2 + \frac{A + C}{2} x + \frac{B + D}{2} = 0$.

2010 Dutch IMO TST, 5

The polynomial $A(x) = x^2 + ax + b$ with integer coefficients has the following property: for each prime $p$ there is an integer $k$ such that $A(k)$ and $A(k + 1)$ are both divisible by $p$. Proof that there is an integer $m$ such that $A(m) = A(m + 1) = 0$.

2015 Caucasus Mathematical Olympiad, 2

The equation $(x+a) (x+b) = 9$ has a root $a+b$. Prove that $ab\le 1$.