This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 236

2014 Singapore Senior Math Olympiad, 1

Tags: vieta
If $\alpha$ and $\beta$ are the roots of the equation $3x^2+x-1=0$, where $\alpha>\beta$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$. $ \textbf{(A) }\frac{7}{9}\qquad\textbf{(B) }-\frac{7}{9}\qquad\textbf{(C) }\frac{7}{3}\qquad\textbf{(D) }-\frac{7}{3}\qquad\textbf{(E) }-\frac{1}{9} $

2007 Bosnia Herzegovina Team Selection Test, 4

Let $P(x)$ be a polynomial such that $P(x)=x^3-2x^2+bx+c$. Roots of $P(x)$ belong to interval $(0,1)$. Prove that $8b+9c \leq 8$. When does equality hold?

2007 AMC 12/AHSME, 14

Tags: vieta
Let $ a,$ $ b,$ $ c,$ $ d,$ and $ e$ be distinct integers such that \[ (6 \minus{} a)(6 \minus{} b)(6 \minus{} c)(6 \minus{} d)(6 \minus{} e) \equal{} 45. \]What is $ a \plus{} b \plus{} c \plus{} d \plus{} e?$ $ \textbf{(A)}\ 5 \qquad \textbf{(B)}\ 17 \qquad \textbf{(C)}\ 25 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 30$

2003 AMC 10, 5

Let $ d$ and $ e$ denote the solutions of $ 2x^2\plus{}3x\minus{}5\equal{}0$. What is the value of $ (d\minus{}1)(e\minus{}1)$? $ \textbf{(A)}\ \minus{}\frac{5}{2} \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

2016 Indonesia TST, 2

Let $a,b$ be two positive integers, such that $ab\neq 1$. Find all the integer values that $f(a,b)$ can take, where \[ f(a,b) = \frac { a^2+ab+b^2} { ab- 1} . \]

1996 Taiwan National Olympiad, 4

Show that for any real numbers $a_{3},a_{4},...,a_{85}$, not all the roots of the equation $a_{85}x^{85}+a_{84}x^{84}+...+a_{3}x^{3}+3x^{2}+2x+1=0$ are real.

1999 AIME Problems, 3

Find the sum of all positive integers $n$ for which $n^2-19n+99$ is a perfect square.

2009 AIME Problems, 13

Let $ A$ and $ B$ be the endpoints of a semicircular arc of radius $ 2$. The arc is divided into seven congruent arcs by six equally spaced points $ C_1,C_2,\ldots,C_6$. All chords of the form $ \overline{AC_i}$ or $ \overline{BC_i}$ are drawn. Let $ n$ be the product of the lengths of these twelve chords. Find the remainder when $ n$ is divided by $ 1000$.

2020/2021 Tournament of Towns, P2

Baron Munchausen presented a new theorem: if a polynomial $x^{n} - ax^{n-1} + bx^{n-2}+ \dots$ has $n$ positive integer roots then there exist $a$ lines in the plane such that they have exactly $b$ intersection points. Is the baron’s theorem true?

2006 Flanders Math Olympiad, 1

(a) Solve for $\theta\in\mathbb{R}$: $\cos(4\theta) = \cos(3\theta)$ (b) $\cos\left(\frac{2\pi}{7}\right)$, $\cos\left(\frac{4\pi}{7}\right)$ and $\cos\left(\frac{6\pi}{7}\right)$ are the roots of an equation of the form $ax^3+bx^2+cx+d = 0$ where $a, b, c, d$ are integers. Determine $a, b, c$ and $d$.

2011 AIME Problems, 15

For some integer $m$, the polynomial $x^3-2011x+m$ has the three integer roots $a$, $b$, and $c$. Find $|a|+|b|+|c|$.