This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 236

2014 Cezar Ivănescu, 3

Let $ A,B,C,D $ be four $ 2\times 2 $ complex matrices such that $ A-D $ is invertible and such that $$ A^2+BA+C=0=D^2+BD+C. $$ Prove that $ \text{tr} (A+D) =-\text{tr} B $ and $ \det (AD) =\det C. $

2013 Turkey Junior National Olympiad, 1

Let $x, y, z$ be real numbers satisfying $x+y+z=0$ and $x^2+y^2+z^2=6$. Find the maximum value of \[ |(x-y)(y-z)(z-x) | \]

2015 AMC 10, 12

Points $(\sqrt{\pi}, a)$ and $(\sqrt{\pi}, b)$ are distinct points on the graph of $y^2+x^4=2x^2y+1$. What is $|a-b|$? $ \textbf{(A) }1\qquad\textbf{(B) }\dfrac{\pi}{2}\qquad\textbf{(C) }2\qquad\textbf{(D) }\sqrt{1+\pi}\qquad\textbf{(E) }1+\sqrt{\pi} $

1971 AMC 12/AHSME, 20

The sum of the squares of the roots of the equation $x^2+2hx=3$ is $10$. The absolute value of $h$ is equal to $\textbf{(A) }-1\qquad\textbf{(B) }\textstyle\frac{1}{2}\qquad\textbf{(C) }\textstyle\frac{3}{2}\qquad\textbf{(D) }2\qquad \textbf{(E) }\text{None of these}$

1983 AIME Problems, 3

What is the product of the real roots of the equation \[x^2 + 18x + 30 = 2 \sqrt{x^2 + 18x + 45}\,\,?\]

2024 Harvard-MIT Mathematics Tournament, 1

Tags: vieta , algebra
Suppose $r$, $s$, and $t$ are nonzero reals such that the polynomial $x^2 + rx + s$ has $s$ and $t$ as roots, and the polynomial $x^2 + tx + r$ has $5$ as a root. Compute $s$.

2016 SDMO (High School), 1

Tags: vieta , quadratic , algebra
Quadratic equation $ x^2\plus{}ax\plus{}b\plus{}1\equal{}0$ have 2 positive integer roots, for integers $ a,b$. Show that $ a^2\plus{}b^2$ is not a prime.

2013 NIMO Problems, 5

Let $x,y,z$ be complex numbers satisfying \begin{align*} z^2 + 5x &= 10z \\ y^2 + 5z &= 10y \\ x^2 + 5y &= 10x \end{align*} Find the sum of all possible values of $z$. [i]Proposed by Aaron Lin[/i]

1998 Harvard-MIT Mathematics Tournament, 7

Given that three roots of $f(x)=x^4+ax^2+bx+c$ are $2$, $-3$, and $5$, what is the value of $a+b+c$?

2010 AMC 10, 21

The polynomial $ x^3\minus{}ax^2\plus{}bx\minus{}2010$ has three positive integer zeros. What is the smallest possible value of $ a$? $ \textbf{(A)}\ 78 \qquad \textbf{(B)}\ 88 \qquad \textbf{(C)}\ 98 \qquad \textbf{(D)}\ 108 \qquad \textbf{(E)}\ 118$

2013 Iran MO (3rd Round), 4

Prime $p=n^2 +1$ is given. Find the sets of solutions to the below equation: \[x^2 - (n^2 +1)y^2 = n^2.\] (25 points)

2013 NIMO Summer Contest, 4

Find the sum of the real roots of the polynomial \[ \prod_{k=1}^{100} \left( x^2-11x+k \right) = \left( x^2-11x+1 \right)\left( x^2-11x+2 \right)\dots\left(x^2-11x+100\right). \][i]Proposed by Evan Chen[/i]

2002 Italy TST, 3

Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $(x,y)$ such that $(\text{i})$ $x$ and $y$ are relatively prime; $(\text{ii})$ $x$ divides $y^2+m;$ $(\text{iii})$ $y$ divides $x^2+m.$

1965 AMC 12/AHSME, 7

The sum of the reciprocals of the roots of the equation $ ax^2 \plus{} bx \plus{} c \equal{} 0$ is: $ \textbf{(A)}\ \frac {1}{a} \plus{} \frac {1}{b} \qquad \textbf{(B)}\ \minus{} \frac {c}{b} \qquad \textbf{(C)}\ \frac {b}{c} \qquad \textbf{(D)}\ \minus{} \frac {a}{b} \qquad \textbf{(E)}\ \minus{} \frac {b}{c}$

2015 AMC 10, 16

If $y+4 = (x-2)^2, x+4 = (y-2)^2$, and $x \neq y$, what is the value of $x^2+y^2$? $ \textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30} $

1971 IMO Longlists, 16

Knowing that the system \[x + y + z = 3,\]\[x^3 + y^3 + z^3 = 15,\]\[x^4 + y^4 + z^4 = 35,\] has a real solution $x, y, z$ for which $x^2 + y^2 + z^2 < 10$, find the value of $x^5 + y^5 + z^5$ for that solution.

2008 China National Olympiad, 3

Find all triples $(p,q,n)$ that satisfy \[q^{n+2} \equiv 3^{n+2} (\mod p^n) ,\quad p^{n+2} \equiv 3^{n+2} (\mod q^n)\] where $p,q$ are odd primes and $n$ is an positive integer.

2002 AMC 10, 11

Let $P(x)=kx^3+2k^2x^2+k^3$. Find the sum of all real numbers $k$ for which $x-2$ is a factor of $P(x)$. $\textbf{(A) }-8\qquad\textbf{(B) }-4\qquad\textbf{(C) }0\qquad\textbf{(D) }5\qquad\textbf{(E) }8$

2010 Romania National Olympiad, 1

Let $(a_n)_{n\ge0}$ be a sequence of positive real numbers such that \[\sum_{k=0}^nC_n^ka_ka_{n-k}=a_n^2,\ \text{for any }n\ge 0.\] Prove that $(a_n)_{n\ge0}$ is a geometric sequence. [i]Lucian Dragomir[/i]

2007 AMC 12/AHSME, 21

The sum of the zeros, the product of the zeros, and the sum of the coefficients of the function $ f(x) \equal{} ax^{2} \plus{} bx \plus{} c$ are equal. Their common value must also be which of the following? $ \textbf{(A)}\ \text{the coefficient of }x^{2}\qquad \textbf{(B)}\ \text{the coefficient of }x$ $ \textbf{(C)}\ \text{the y \minus{} intercept of the graph of }y \equal{} f(x)$ $ \textbf{(D)}\ \text{one of the x \minus{} intercepts of the graph of }y \equal{} f(x)$ $ \textbf{(E)}\ \text{the mean of the x \minus{} intercepts of the graph of }y \equal{} f(x)$

2012 AIME Problems, 14

Complex numbers $a$, $b$ and $c$ are the zeros of a polynomial $P(z) = z^3+qz+r$, and $|a|^2+|b|^2+|c|^2=250$. The points corresponding to $a$, $b$, and $c$ in the complex plane are the vertices of a right triangle with hypotenuse $h$. Find $h^2$.

2008 India Regional Mathematical Olympiad, 3

Suppose $ a$ and $ b$ are real numbers such that the roots of the cubic equation $ ax^3\minus{}x^2\plus{}bx\minus{}1$ are positive real numbers. Prove that: \[ (i)\ 0<3ab\le 1\text{ and }(i)\ b\ge \sqrt{3} \] [19 points out of 100 for the 6 problems]

2021 Science ON grade X, 3

Consider a real number $a$ that satisfies $a=(a-1)^3$. Prove that there exists an integer $N$ that satisfies $$|a^{2021}-N|<2^{-1000}.$$ [i] (Vlad Robu) [/i]

2017 Azerbaijan JBMO TST, 2

Tags: vieta , algebra
Let $x,y,z$ be 3 different real numbers not equal to $0$ that satisfiying $x^2-xy=y^2-yz=z^2-zx$. Find all the values of $\frac{x}{z}+\frac{y}{x}+\frac{z}{y}$ and $(x+y+z)^3+9xyz$.

2020 HK IMO Preliminary Selection Contest, 11

Let $a$, $b$, $c$ be the three roots of the equation $x^3-(k+1)x^2+kx+12=0$, where $k$ is a real number. If $(a-2)^3+(b-2)^3+(c-2)^3=-18$, find the value of $k$.