This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 236

1967 AMC 12/AHSME, 17

Tags: vieta
If $r_1$ and $r_2$ are the distinct real roots of $x^2+px+8=0$, then it must follow that: $\textbf{(A)}\ |r_1+r_2|>4\sqrt{2}\qquad \textbf{(B)}\ |r_1|>3 \; \text{or} \; |r_2| >3 \\ \textbf{(C)}\ |r_1|>2 \; \text{and} \; |r_2|>2\qquad \textbf{(D)}\ r_1<0 \; \text{and} \; r_2<0\qquad \textbf{(E)}\ |r_1+r_2|<4\sqrt{2}$

2005 International Zhautykov Olympiad, 3

Find all prime numbers $ p,q < 2005$ such that $ q | p^{2} \plus{} 8$ and $ p|q^{2} \plus{} 8.$

1994 AIME Problems, 13

The equation \[ x^{10}+(13x-1)^{10}=0 \] has 10 complex roots $r_1, \overline{r_1}, r_2, \overline{r_2}, r_3, \overline{r_3}, r_4, \overline{r_4}, r_5, \overline{r_5},$ where the bar denotes complex conjugation. Find the value of \[ \frac 1{r_1\overline{r_1}}+\frac 1{r_2\overline{r_2}}+\frac 1{r_3\overline{r_3}}+\frac 1{r_4\overline{r_4}}+\frac 1{r_5\overline{r_5}}. \]

2014 Harvard-MIT Mathematics Tournament, 4

Let $b$ and $c$ be real numbers and define the polynomial $P(x)=x^2+bx+c$. Suppose that $P(P(1))=P(P(2))=0$, and that $P(1) \neq P(2)$. Find $P(0)$.

2009 AMC 12/AHSME, 19

For each positive integer $ n$, let $ f(n)\equal{}n^4\minus{}360n^2\plus{}400$. What is the sum of all values of $ f(n)$ that are prime numbers? $ \textbf{(A)}\ 794\qquad \textbf{(B)}\ 796\qquad \textbf{(C)}\ 798\qquad \textbf{(D)}\ 800\qquad \textbf{(E)}\ 802$

1992 IMO Shortlist, 1

Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $ (x, y)$ such that [i](i)[/i] $ x$ and $ y$ are relatively prime; [i](ii)[/i] $ y$ divides $ x^2 \plus{} m$; [i](iii)[/i] $ x$ divides $ y^2 \plus{} m.$ [i](iv)[/i] $ x \plus{} y \leq m \plus{} 1\minus{}$ (optional condition)

2023 USAMTS Problems, 4

Prove that for any real numbers $1 \leq \sqrt{x} \leq y \leq x^2$, the following system of equations has a real solution $(a, b, c)$: \[a+b+c = \frac{x+x^2+x^4+y+y^2+y^4}{2}\] \[ab+ac+bc = \frac{x^3 + x^5 + x^6 + y^3 + y^5 + y^6}{2}\] \[abc=\frac{x^7+y^7}{2}\]

2002 AMC 12/AHSME, 13

Two different positive numbers $ a$ and $ b$ each differ from their reciprocals by 1. What is $ a \plus{} b$? \[ \textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } \sqrt {5} \qquad \textbf{(D) } \sqrt {6} \qquad \textbf{(E) } 3 \]

2012 USA TSTST, 6

Positive real numbers $x, y, z$ satisfy $xyz+xy+yz+zx = x+y+z+1$. Prove that \[ \frac{1}{3} \left( \sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \le \left( \frac{x+y+z}{3} \right)^{5/8} . \]

1966 AMC 12/AHSME, 30

Tags: vieta
If three of the roots of $x^4+ax^2+bx+c=0$ are $1$, $2$, and $3$, then the value of $a+c$ is: $\text{(A)}\ 35 \qquad \text{(B)}\ 24\qquad \text{(C)}\ -12\qquad \text{(D)}\ -61 \qquad \text{(E)}\ -63$

PEN B Problems, 5

Let $p$ be an odd prime. If $g_{1}, \cdots, g_{\phi(p-1)}$ are the primitive roots $\pmod{p}$ in the range $1<g \le p-1$, prove that \[\sum_{i=1}^{\phi(p-1)}g_{i}\equiv \mu(p-1) \pmod{p}.\]

2010 BMO TST, 2

Let $ a\geq 2$ be a real number; with the roots $ x_{1}$ and $ x_{2}$ of the equation $ x^2\minus{}ax\plus{}1\equal{}0$ we build the sequence with $ S_{n}\equal{}x_{1}^n \plus{} x_{2}^n$. [b]a)[/b]Prove that the sequence $ \frac{S_{n}}{S_{n\plus{}1}}$, where $ n$ takes value from $ 1$ up to infinity, is strictly non increasing. [b]b)[/b]Find all value of $ a$ for the which this inequality hold for all natural values of $ n$ $ \frac{S_{1}}{S_{2}}\plus{}\cdots \plus{}\frac{S_{n}}{S_{n\plus{}1}}>n\minus{}1$

2013 Iran MO (3rd Round), 2

Suppose that $a,b$ are two odd positive integers such that $2ab+1 \mid a^2 + b^2 + 1$. Prove that $a=b$. (15 points)

2007 Harvard-MIT Mathematics Tournament, 8

Suppose that $\omega$ is a primitive $2007^{\text{th}}$ root of unity. Find $\left(2^{2007}-1\right)\displaystyle\sum_{j=1}^{2006}\dfrac{1}{2-\omega^j}$.

2010 AMC 12/AHSME, 23

Monic quadratic polynomials $ P(x)$ and $ Q(x)$ have the property that $ P(Q(x))$ has zeroes at $ x\equal{}\minus{}23,\minus{}21,\minus{}17, \text{and} \minus{}15$, and $ Q(P(x))$ has zeroes at $ x\equal{}\minus{}59, \minus{}57, \minus{}51, \text{and} \minus{}49$. What is the sum of the minimum values of $ P(x)$ and $ Q(x)$? $ \textbf{(A)}\ \text{\minus{}100} \qquad \textbf{(B)}\ \text{\minus{}82} \qquad \textbf{(C)}\ \text{\minus{}73} \qquad \textbf{(D)}\ \text{\minus{}64} \qquad \textbf{(E)}\ 0$

2002 AMC 10, 10

Tags: quadratic , vieta
Suppose that $ a$ and $ b$ are are nonzero real numbers, and that the equation $ x^2\plus{}ax\plus{}b\equal{}0$ has solutions $ a$ and $ b$. Then the pair $ (a,b)$ is $ \textbf{(A)}\ (\minus{}2,1) \qquad \textbf{(B)}\ (\minus{}1,2) \qquad \textbf{(C)}\ (1,\minus{}2) \qquad \textbf{(D)}\ (2,\minus{}1) \qquad \textbf{(E)}\ (4,4)$

2004 Indonesia MO, 2

Tags: algebra , quadratic , vieta
Quadratic equation $ x^2\plus{}ax\plus{}b\plus{}1\equal{}0$ have 2 positive integer roots, for integers $ a,b$. Show that $ a^2\plus{}b^2$ is not a prime.

2011 Mongolia Team Selection Test, 3

Let $m$ and $n$ be positive integers such that $m>n$ and $m \equiv n \pmod{2}$. If $(m^2-n^2+1) \mid n^2-1$, then prove that $m^2-n^2+1$ is a perfect square. (proposed by G. Batzaya, folklore)

1954 AMC 12/AHSME, 41

The sum of all the roots of $ 4x^3\minus{}8x^2\minus{}63x\minus{}9\equal{}0$ is: $ \textbf{(A)}\ 8 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ \minus{}8 \qquad \textbf{(D)}\ \minus{}2 \qquad \textbf{(E)}\ 0$

2014 Contests, 1

Tags: vieta
If $\alpha$ and $\beta$ are the roots of the equation $3x^2+x-1=0$, where $\alpha>\beta$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$. $ \textbf{(A) }\frac{7}{9}\qquad\textbf{(B) }-\frac{7}{9}\qquad\textbf{(C) }\frac{7}{3}\qquad\textbf{(D) }-\frac{7}{3}\qquad\textbf{(E) }-\frac{1}{9} $

2012 National Olympiad First Round, 23

$a,b,c$ are distinct real roots of $x^3-3x+1=0$. $a^8+b^8+c^8$ is $ \textbf{(A)}\ 156 \qquad \textbf{(B)}\ 171 \qquad \textbf{(C)}\ 180 \qquad \textbf{(D)}\ 186 \qquad \textbf{(E)}\ 201$

2010 AMC 12/AHSME, 6

A [i]palindrome[/i], such as $ 83438$, is a number that remains the same when its digits are reversed. The numbers $ x$ and $ x \plus{} 32$ are three-digit and four-digit palindromes, respectively. What is the sum of the digits of x? $ \textbf{(A)}\ 20\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 22\qquad \textbf{(D)}\ 23\qquad \textbf{(E)}\ 24$

2003 Romania Team Selection Test, 7

Find all integers $a,b,m,n$, with $m>n>1$, for which the polynomial $f(X)=X^n+aX+b$ divides the polynomial $g(X)=X^m+aX+b$. [i]Laurentiu Panaitopol[/i]

MathLinks Contest 7th, 7.1

Find all pairs of positive integers $ a,b$ such that \begin{align*} b^2 + b+ 1 & \equiv 0 \pmod a \\ a^2+a+1 &\equiv 0 \pmod b . \end{align*}

2008 Hong kong National Olympiad, 2

Let $ n>4$ be a positive integer such that $ n$ is composite (not a prime) and divides $ \varphi (n) \sigma (n) \plus{}1$, where $ \varphi (n)$ is the Euler's totient function of $ n$ and $ \sigma (n)$ is the sum of the positive divisors of $ n$. Prove that $ n$ has at least three distinct prime factors.