This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2025 Portugal MO, 6

Maria wants to solve a challenge with a deck of cards, each with a different figure. Initially, the cards are distributed randomly into two piles, not necessarily in equal parts. Maria's goal is to get all the cards into the same pile. On each turn, Maria takes the top card from each pile and compares them. In the rule book, there's a table that indicates, for each card match, which of the two wins. Both cards are then placed on the bottom of the winning card in the order Maria chooses. The challenge ends when all the cards are in one pile. Show that it is always possible for Maria to solve the challenge. Regardless of the initial distribution of the cards and the table in the rule book.

2014 Harvard-MIT Mathematics Tournament, 3

Tags: logarithm , hmmt
Let \[ A = \frac{1}{6}((\log_2(3))^3-(\log_2(6))^3-(\log_2(12))^3+(\log_2(24))^3) \]. Compute $2^A$.

2019 Kurschak Competition, 1

In an acute triangle $\bigtriangleup ABC$, $AB<AC<BC$, and $A_1,B_1,C_1$ are the projections of $A,B,C$ to the corresponding sides. Let the reflection of $B_1$ wrt $CC_1$ be $Q$, and the reflection of $C_1$ wrt $BB_1$ be $P$. Prove that the circumcirle of $A_1PQ$ passes through the midpoint of $BC$.

2025 Belarusian National Olympiad, 10.5

Tags: geometry
Side lengths $AB,BC,CD,AD$ of convex quadrilateral $ABCD$ are equal $16,13,14,17$ respectively. Circles $w_1,w_2,w_3,w_4$ are drawn with centers $A,B,C,D$ and radii $2,6,3,9$ respectively. Common external tangents to circles $w_1,w_2$; $w_2,w_3$; $w_3,w_4$; $w_4,w_1$ intersect at $A_1,B_1,C_1,D_1$ respectively. Prove that lines $AA_1,BB_1,CC_1,DD_1$ are concurrent. [i]Aliaksei Vaidzelevich[/i]

2021 Science ON grade X, 4

Find all functions $f:\mathbb{Z}_{\ge 1}\to \mathbb{R}_{>0}$ such that for all positive integers $n$ the following relation holds: $$\sum_{d|n} f(d)^3=\left (\sum_{d|n} f(d) \right )^2,$$ where both sums are taken over the positive divisors of $n$. [i] (Vlad Robu) [/i]

2018 Purple Comet Problems, 2

Tags:
The following figure is made up of many $2$ × $4$ tiles such that adjacent tiles always share an edge of length $2$. Find the perimeter of this figure.

2007 Today's Calculation Of Integral, 225

2 Points $ P\left(a,\ \frac{1}{a}\right),\ Q\left(2a,\ \frac{1}{2a}\right)\ (a > 0)$ are on the curve $ C: y \equal{}\frac{1}{x}$. Let $ l,\ m$ be the tangent lines at $ P,\ Q$ respectively. Find the area of the figure surrounded by $ l,\ m$ and $ C$.

2020 IMO Shortlist, A8

Let $R^+$ be the set of positive real numbers. Determine all functions $f:R^+$ $\rightarrow$ $R^+$ such that for all positive real numbers $x$ and $y:$ \[f(x+f(xy))+y=f(x)f(y)+1\] [i]Ukraine[/i]

2011 China Girls Math Olympiad, 6

Do there exist positive integers $m,n$, such that $m^{20}+11^n$ is a square number?

2010 Contests, 1

Tags: inequalities
Let $a,b$ be real numbers. Prove the inequality \[ 2(a^4+a^2b^2+b^4)\ge 3(a^3b+ab^3).\]

2022 Bulgarian Autumn Math Competition, Problem 10.3

Are there natural number(s) $n$, such that $3^n+1$ has a divisor in the form $24k+20$

Math Hour Olympiad, Grades 5-7, 2011.67

[u]Round 1[/u] [b]p1.[/b] In a chemical lab there are three vials: one that can hold $1$ oz of fluid, another that can hold $2$ oz, and a third that can hold $3$ oz. The first is filled with grape juice, the second with sulfuric acid, and the third with water. There are also $3$ empty vials in the cupboard, also of sizes $1$ oz, $2$ oz, and $3$ oz. In order to save the world with grape-flavored acid, James Bond must make three full bottles, one of each size, filled with a mixture of all three liquids so that each bottle has the same ratio of juice to acid to water. How can he do this, considering he was silly enough not to bring any equipment? [b]p2.[/b] Twelve people, some are knights and some are knaves, are sitting around a table. Knaves always lie and knights always tell the truth. At some point they start up a conversation. The first person says, “There are no knights around this table.” The second says, “There is at most one knight at this table.” The third – “There are at most two knights at the table.” And so on until the $12$th says, “There are at most eleven knights at the table.” How many knights are at the table? Justify your answer. [b]p3.[/b] Aquaman has a barrel divided up into six sections, and he has placed a red herring in each. Aquaman can command any fish of his choice to either ‘jump counterclockwise to the next sector’ or ‘jump clockwise to the next sector.’ Using a sequence of exactly $30$ of these commands, can he relocate all the red herrings to one sector? If yes, show how. If no, explain why not. [img]https://cdn.artofproblemsolving.com/attachments/0/f/956f64e346bae82dee5cbd1326b0d1789100f3.png[/img] [b]p4.[/b] Is it possible to place $13$ integers around a circle so that the sum of any $3$ adjacent numbers is exactly $13$? [b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.) [u]Round 2[/u] [b]p6.[/b] Eight students participated in a math competition. There were eight problems to solve. Each problem was solved by exactly five people. Show that there are two students who solved all eight problems between them. [b]p7.[/b] There are $3n$ checkers of three different colors: $n$ red, $n$ green and $n$ blue. They were used to randomly fill a board with $3$ rows and $n$ columns so that each square of the board has one checker on it. Prove that it is possible to reshuffle the checkers within each row so that in each column there are checkers of all three colors. Moving checkers to a different row is not allowed. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 AMC 12/AHSME Fall, 11

Tags: probability
Una rolls $6$ standard $6$-sided dice simultaneously and calculates the product of the $6{ }$ numbers obtained. What is the probability that the product is divisible by $4?$ $\textbf{(A)}\: \frac34\qquad\textbf{(B)} \: \frac{57}{64}\qquad\textbf{(C)} \: \frac{59}{64}\qquad\textbf{(D)} \: \frac{187}{192}\qquad\textbf{(E)} \: \frac{63}{64}$

2023 Malaysian APMO Camp Selection Test, 5

Let $n\ge 3$, $d$ be positive integers. For an integer $x$, denote $r(x)$ be the remainder of $x$ when divided by $n$ such that $0\le r(x)\le n-1$. Let $c$ be a positive integer with $1<c<n$ and $\gcd(c,n)=1$, and suppose $a_1, \cdots, a_d$ are positive integers with $a_1+\cdots+a_d\le n-1$. \\ (a) Prove that if $n<2d$, then $\displaystyle\sum_{i=1}^d r(ca_i)\ge n.$ \\ (b) For each $n$, find the smallest $d$ such that $\displaystyle\sum_{i=1}^d r(ca_i)\ge n$ always holds. [i]Proposed by Yeoh Zi Song & Anzo Teh Zhao Yang[/i]

I Soros Olympiad 1994-95 (Rus + Ukr), 9.2

Given a regular $72$-gon. Lenya and Kostya play the game "Make an equilateral triangle." They take turns marking with a pencil on one still unmarked angle of the $72$-gon: Lenya uses red. Kostya uses blue. Lenya starts the game, and the one who marks first wins if its color is three vertices that are the vertices of some equilateral triangle, if all the vertices are marked and no such a triangle exists, the game ends in a draw. Prove that Kostya can play like this so as not to lose.

2021 CHMMC Winter (2021-22), Individual

[b]p1.[/b] Fleming has a list of 8 mutually distinct integers between $90$ to $99$, inclusive. Suppose that the list has median $94$, and that it contains an even number of odd integers. If Fleming reads the numbers in the list from smallest to largest, then determine the sixth number he reads. [b]p2.[/b] Find the number of ordered pairs $(x,y)$ of three digit base-$10$ positive integers such that $x-y$ is a positive integer, and there are no borrows in the subtraction $x-y$. For example, the subtraction on the left has a borrow at the tens digit but not at the units digit, whereas the subtraction on the right has no borrows. $$\begin{tabular}{ccccc} & 4 & 7 & 2 \\ - & 1 & 9 & 1\\ \hline & 2 & 8 & 1 \\ \end{tabular}\,\,\, \,\,\, \begin{tabular}{ccccc} & 3 & 7 & 9 \\ - & 2 & 6 & 3\\ \hline & 1 & 1 & 6 \\ \end{tabular}$$ [b]p3.[/b] Evaluate $$1 \cdot 2 \cdot 3-2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5- 4 \cdot 5 \cdot 6+ ... +2017 \cdot 2018 \cdot 2019 -2018 \cdot 2019 \cdot 2020+1010 \cdot 2019 \cdot 2021$$ [b]p4.[/b] Find the number of ordered pairs of integers $(a,b)$ such that $$\frac{ab+a+b}{a^2+b^2+1}$$ is an integer. [b]p5.[/b] Lin Lin has a $4\times 4$ chessboard in which every square is initially empty. Every minute, she chooses a random square $C$ on the chessboard, and places a pawn in $C$ if it is empty. Then, regardless of whether $C$ was previously empty or not, she then immediately places pawns in all empty squares a king’s move away from $C$. The expected number of minutes before the entire chessboard is occupied with pawns equals $\frac{m}{n}$ for relatively prime positive integers $m$,$n$. Find $m+n$. A king’s move, in chess, is one square in any direction on the chessboard: horizontally, vertically, or diagonally. [b]p6.[/b] Let $P(x) = x^5-3x^4+2x^3-6x^2+7x+3$ and $a_1,...,a_5$ be the roots of$ P(x)$. Compute $$\sum^5_{k=1}(a^3_k -4a^2_k +a_k +6).$$ [b]p7.[/b] Rectangle $AXCY$ with a longer length of $11$ and square $ABCD$ share the same diagonal $\overline{AC}$. Assume $B$,$X$ lie on the same side of $\overline{AC}$ such that triangle$ BXC$ and square $ABCD$ are non-overlapping. The maximum area of $BXC$ across all such configurations equals $\frac{m}{n}$ for relatively prime positive integers $m$,$n$. Compute $m+n$. [b]p8.[/b] Earl the electron is currently at $(0,0)$ on the Cartesian plane and trying to reach his house at point $(4,4)$. Each second, he can do one of three actions: move one unit to the right, move one unit up, or teleport to the point that is the reflection of its current position across the line $y=x$. Earl cannot teleport in two consecutive seconds, and he stops taking actions once he reaches his house. Earl visits a chronologically ordered sequence of distinct points $(0,0)$, $...$, $(4,4)$ due to his choice of actions. This is called an [i]Earl-path[/i]. How many possible such [i]Earl-paths[/i] are there? [b]p9.[/b] Let $P(x)$ be a degree-$2022$ polynomial with leading coefficient $1$ and roots $\cos \left( \frac{2\pi k}{2023} \right)$ for $k = 1$ , $...$,$2022$ (note $P(x)$ may have repeated roots). If $P(1) =\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, then find the remainder when $m+n$ is divided by $100$. [b]p10.[/b] A randomly shuffled standard deck of cards has $52$ cards, $13$ of each of the four suits. There are $4$ Aces and $4$ Kings, one of each of the four suits. One repeatedly draws cards from the deck until one draws an Ace. Given that the first King appears before the first Ace, the expected number of cards one draws after the first King and before the first Ace is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [b]p11.[/b] The following picture shows a beam of light (dashed line) reflecting off a mirror (solid line). The [i]angle of incidence[/i] is marked by the shaded angle; the[i] angle of reflection[/i] is marked by the unshaded angle. [img]https://cdn.artofproblemsolving.com/attachments/9/d/d58086e5cdef12fbc27d0053532bea76cc50fd.png[/img] The sides of a unit square $ABCD$ are magically distorted mirrors such that whenever a light beam hits any of the mirrors, the measure of the angle of incidence between the light beam and the mirror is a positive real constant $q$ degrees greater than the measure of the angle of reflection between the light beam and the mirror. A light beam emanating from $A$ strikes $\overline{CD}$ at $W_1$ such that $2DW_1 =CW_1$, reflects off of $\overline{CD}$ and then strikes $\overline{BC}$ at $W_2$ such that $2CW_2 = BW_2$, reflects off of $\overline{BC}$, etc. To this end, denote $W_i$ the $i$-th point at which the light beam strikes $ABCD$. As $i$ grows large, the area of $W_iW_{i+1}W_{i+2}W_{i+3}$ approaches $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$. [b]p12.[/b] For any positive integer $m$, define $\phi (m)$ the number of positive integers $k \le m$ such that $k$ and $m$ are relatively prime. Find the smallest positive integer $N$ such that $\sqrt{ \phi (n) }\ge 22$ for any integer $n \ge N$. [b]p13.[/b] Let $n$ be a fixed positive integer, and let $\{a_k\}$ and $\{b_k\}$ be sequences defined recursively by $$a_1 = b_1 = n^{-1}$$ $$a_j = j(n- j+1)a_{j-1}\,\,\, , \,\,\, j > 1$$ $$b_j = nj^2b_{j-1}+a_j\,\,\, , \,\,\, j > 1$$ When $n = 2021$, then $a_{2021} +b_{2021} = m \cdot 2017^2$ for some positive integer $m$. Find the remainder when $m$ is divided by $2017$. [b]p14.[/b] Consider the quadratic polynomial $g(x) = x^2 +x+1020100$. A positive odd integer $n$ is called $g$-[i]friendly[/i] if and only if there exists an integer $m$ such that $n$ divides $2 \cdot g(m)+2021$. Find the number of $g$-[i]friendly[/i] positive odd integers less than $100$. [b]p15.[/b] Let $ABC$ be a triangle with $AB < AC$, inscribed in a circle with radius $1$ and center $O$. Let $H$ be the intersection of the altitudes of $ABC$. Let lines $\overline{OH}$, $\overline{BC}$ intersect at $T$. Suppose there is a circle passing through $B$, $H$, $O$, $C$. Given $\cos (\angle ABC-\angle BCA) = \frac{11}{32}$ , then $TO = \frac{m\sqrt{p}}{n}$ for relatively prime positive integers $m$,$n$ and squarefree positive integer $p$. Find $m+n+ p$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Russian TST 2014, P2

In the quadrilateral $ABCD$ the angles $B{}$ and $D{}$ are straight. The lines $AB{}$ and $DC{}$ intersect at $E$ and the lines $AD$ and $BC$ intersect at $F{}.$ The line passing through $B{}$ parallel to $C{}$D intersects the circumscribed circle $\omega$ of $ABF{}$ at $K{}$ and the segment $KE{}$ intersects $\omega$ at $P{}.$ Prove that the line $AP$ divides the segment $CE$ in half.

2000 Iran MO (2nd round), 3

Tags: algebra
[i]Super number[/i] is a sequence of numbers $0,1,2,\ldots,9$ such that it has infinitely many digits at left. For example $\ldots 3030304$ is a [i]super number[/i]. Note that all of positive integers are [i]super numbers[/i], which have zeros before they're original digits (for example we can represent the number $4$ as $\ldots, 00004$). Like positive integers, we can add up and multiply [i]super numbers[/i]. For example: \[ \begin{array}{cc}& \ \ \ \ldots 3030304 \\ &+ \ldots4571378\\ &\overline{\qquad \qquad \qquad }\\ & \ \ \ \ldots 7601682 \end{array} \] And \[ \begin{array}{cl}& \ \ \ \ldots 3030304 \\ &\times \ldots4571378\\ &\overline{\qquad \qquad \qquad }\\ & \ \ \ \ldots 4242432 \\ & \ \ \ \ldots 212128 \\ & \ \ \ \ldots 90912 \\ & \ \ \ \ldots 0304 \\ & \ \ \ \ldots 128 \\ & \ \ \ \ldots 20 \\ & \ \ \ \ldots 6 \\ &\overline{\qquad \qquad \qquad } \\ & \ \ \ \ldots 5038912 \end{array}\] [b]a)[/b] Suppose that $A$ is a [i]super number[/i]. Prove that there exists a [i]super number[/i] $B$ such that $A+B=\stackrel{\leftarrow}{0}$ (Note: $\stackrel{\leftarrow}{0}$ means a super number that all of its digits are zero). [b]b)[/b] Find all [i]super numbers[/i] $A$ for which there exists a [i]super number[/i] $B$ such that $A \times B=\stackrel{\leftarrow}{0}1$ (Note: $\stackrel{\leftarrow}{0}1$ means the super number $\ldots 00001$). [b]c)[/b] Is this true that if $A \times B= \stackrel{\leftarrow}{0}$, then $A=\stackrel{\leftarrow}{0}$ or $B=\stackrel{\leftarrow}{0}$? Justify your answer.

2019 Slovenia Team Selection Test, 3

Let $n$ be any positive integer and $M$ a set that contains $n$ positive integers. A sequence with $2^n$ elements is christmassy if every element of the sequence is an element of $M$. Prove that, in any christmassy sequence there exist some successive elements, the product of whom is a perfect square.

2015 Taiwan TST Round 2, 3

Find all triples $(p, x, y)$ consisting of a prime number $p$ and two positive integers $x$ and $y$ such that $x^{p -1} + y$ and $x + y^ {p -1}$ are both powers of $p$. [i]Proposed by Belgium[/i]

2010 Dutch IMO TST, 5

Find all triples $(x,y, z)$ of real (but not necessarily positive) numbers satisfying $3(x^2 + y^2 + z^2) = 1$ , $x^2y^2 + y^2z^2 + z^2x^2 = xyz(x + y + z)^3$.

1989 Austrian-Polish Competition, 1

Tags: inequalities
Show that $(\sum_{i=1}^{n}x_iy_iz_i)^2 \le (\sum_{i=1}^{n}x_i^3) (\sum_{i=1}^{n}y_i^3) (\sum_{i=1}^{n}z_i^3)$ for any positive reals $x_i, y_i, z_i$.

1974 AMC 12/AHSME, 7

Tags:
A town's population increased by $1,200$ people, and then this new population decreased by $11 \%$. The town now had $32$ less people than it did before the $1,200$ increase. What is the original population? $ \textbf{(A)}\ 1,200 \qquad\textbf{(B)}\ 11,200 \qquad\textbf{(C)}\ 9,968 \qquad\textbf{(D)}\ 10,000 \qquad\textbf{(E)}\ \text{none of these} $

2002 China National Olympiad, 2

Suppose that a point in the plane is called [i]good[/i] if it has rational coordinates. Prove that all good points can be divided into three sets satisfying: 1) If the centre of the circle is good, then there are three points in the circle from each of the three sets. 2) There are no three collinear points that are from each of the three sets.

2015 QEDMO 14th, 4

There are $50$ male and $50$ female members registered in the QED-DB, who are also there are numbered from $1$ to $100$. In $100$ rounds, Andreas chooses at random one member for the seminar in Bad Tolz, whereupon Katharina already has two each time selected QED members of different sexes may or may not be paired up. Of course QED members cannot be coupled multiple times, ignoring relationships from the time before but both conscientiously. The stability of a relationship between two QED members is the amount of the difference between their numbers in DB and the sum of all stabilities is the promotion of young talent in the QED. What is the greatest possible demand of offspring guaranteed to achieve orgasm? [hide=original wording]In der QED-DB sind 50 m¨annliche und 50 weibliche Mitglieder eingetragen, welche dort mit den Zahlen von 1 bis 100 durchnummeriert sind. In 100 Runden w¨ahlt Andreas jeweils zuf¨allig ein Mitglied fu¨r das Seminar in Bad T¨olz aus, woraufhin jedes Mal Katharina zwei bereits ausgew¨ahlte QEDler unterschiedlichen Geschlechts verkuppeln darf, aber nicht muss. Natu¨rlich k¨onnen QEDler nicht mehrfach verkuppelt werden, Beziehungen aus der Zeit davor ignorieren beide aber gewissenhaft. Die Stabilit¨at einer Beziehung zwischen zwei QEDlern ist der Betrag der Differenz ihrer Zahlen in der DB und die Summe aller Stabilit¨aten ist die Nachwuchsf¨orderung im QED. Was ist die gr¨oßtm¨ogliche Nachwuchsf¨orderung, welche die Orgas garantiert erreichen k¨onnen¿[/hide]