This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 China Girls Math Olympiad, 8

For a tournament with $8$ vertices, if from any vertex it is impossible to follow a route to return to itself, we call the graph a [i]good[/i] graph. Otherwise, we call it a [i]bad[/i] graph. Prove that $(1)$ there exists a tournament with $8$ vertices such that after changing the orientation of any at most $7$ edges of the tournament, the graph is always a[i]bad[/i] graph; $(2)$ for any tournament with $8$ vertices, one can change the orientation of at most $8$ edges of the tournament to get a [i]good[/i] graph. (A tournament is a complete graph with directed edges.)

2021 Azerbaijan IZhO TST, 4

Tags: geometry
Let $ABC$ be a triangle with incircle touching $BC, CA, AB$ at $D, E, F,$ respectively. Let $O$ and $M$ be its circumcenter and midpoint of $BC.$ Suppose that circumcircles of $AEF$ and $ABC$ intersect at $X$ for the second time. Assume $Y \neq X$ is on the circumcircle of $ABC$ such that $OMXY$ is cyclic. Prove that circumcenter of $DXY$ lies on $BC.$ [i]Proposed by tenplusten.[/i]

2005 Italy TST, 1

A stage course is attended by $n \ge 4$ students. The day before the final exam, each group of three students conspire against another student to throw him/her out of the exam. Prove that there is a student against whom there are at least $\sqrt[3]{(n-1)(n- 2)} $conspirators.

1997 Baltic Way, 2

Tags: algebra
Given a sequence $a_1,a_2,a_3,\ldots $ of positive integers in which every positive integer occurs exactly once. Prove that there exist integers $\ell $ and $m,\ 1<\ell <m$, such that $a_1+a_m=2a_{\ell}$.

2016 JBMO Shortlist, 5

Determine all four-digit numbers $\overline{abcd} $ such that $(a + b)(a + c)(a + d)(b + c)(b + d)(c + d) =\overline{abcd} $:

2024 Junior Macedonian Mathematical Olympiad, 4

Let $a_1, a_2, ..., a_n$ be a sequence of perfect squares such that $a_{i + 1}$ can be obtained by concatenating a digit to the right of $a_i$. Determine all such sequences that are of maximum length. [i]Proposed by Ilija Jovčeski[/i]

2005 Federal Competition For Advanced Students, Part 1, 2

Tags: algebra
For how many integers $a$ with $|a| \leq 2005$, does the system $x^2=y+a$ $y^2=x+a$ have integer solutions?

Kvant 2022, M2708 a)

Do there exist 2021 points with integer coordinates on the plane such that the pairwise distances between them are pairwise distinct consecutive integers?

2014 AMC 12/AHSME, 23

The number $2017$ is prime. Let $S=\sum_{k=0}^{62}\binom{2014}{k}$. What is the remainder when $S$ is divided by $2017$? $\textbf{(A) }32\qquad \textbf{(B) }684\qquad \textbf{(C) }1024\qquad \textbf{(D) }1576\qquad \textbf{(E) }2016\qquad$

2020 SIME, 6

Tags:
Let $P(x) = x^2 + ax + b$ be a quadratic polynomial. For how many pairs $(a, b)$ of positive integers where $a, b < 1000$ do the quadratics $P(x+1)$ and $P(x) + 1$ have at least one root in common?

2017 AMC 10, 18

In the figure below, $3$ of the $6$ disks are to be painted blue, $2$ are to be painted red, and $1$ is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible? [asy] size(100); pair A, B, C, D, E, F; A = (0,0); B = (1,0); C = (2,0); D = rotate(60, A)*B; E = B + D; F = rotate(60, A)*C; draw(Circle(A, 0.5)); draw(Circle(B, 0.5)); draw(Circle(C, 0.5)); draw(Circle(D, 0.5)); draw(Circle(E, 0.5)); draw(Circle(F, 0.5)); [/asy] $\textbf{(A) } 6 \qquad \textbf{(B) } 8 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$

2003 France Team Selection Test, 1

A lattice point in the coordinate plane with origin $O$ is called invisible if the segment $OA$ contains a lattice point other than $O,A$. Let $L$ be a positive integer. Show that there exists a square with side length $L$ and sides parallel to the coordinate axes, such that all points in the square are invisible.

2015 AMC 12/AHSME, 11

Tags:
On a sheet of paper, Isabella draws a circle of radius $2$, a circle of radius $3$, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly $k\geq 0$ lines. How many different values of $k$ are possible? $\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad\textbf{(E) }6$

1951 Miklós Schweitzer, 5

In a lake there are several sorts of fish, in the following distribution: $ 18\%$ catfish, $ 2\%$ sturgeon and $ 80\%$ other. Of a catch of ten fishes, let $ x$ denote the number of the catfish and $ y$ that of the sturgeons. Find the expectation of $ \frac {x}{y \plus{} 1}$

2008 Princeton University Math Competition, B6

Tags: circles
Circles $A, B$, and $C$ each have radius $r$, and their centers are the vertices of an equilateral triangle of side length $6r$. Two lines are drawn, one tangent to $A$ and $C$ and one tangent to $B$ and $C$, such that $A$ is on the opposite side of each line from $B$ and $C$. Find the sine of the angle between the two lines. [img]http://4.bp.blogspot.com/-IZv8q-3NYZg/XXmrroy2PnI/AAAAAAAAKxg/jSOcOOQ8Kyw0EwHUifXJ1jOd2ENAo1FfACK4BGAYYCw/s200/2008%2Bpumac%2Bb6.png[/img]

2003 All-Russian Olympiad Regional Round, 8.1

The numbers from $1$ to $10$ were divided into two groups so that the product of the numbers in the first group is completely divisible by the product of the numbers in the second. Which the smallest value can be for the quotient of the first product money for the second?

2017 OMMock - Mexico National Olympiad Mock Exam, 4

Show that the equation $$a^2b=2017(a+b)$$ has no solutions for positive integers $a$ and $b$. [i]Proposed by Oriol Solé[/i]

2010 AMC 12/AHSME, 2

Tags:
A ferry boat shuttles tourists to an island every hour starting at 10 AM until its last trip, which starts at 3 PM. One day the boat captain notes that on the 10 AM trip there were $ 100$ tourists on the ferry boat, and that on each successive trip, the number of tourists was $ 1$ fewer than on the previous trip. How many tourists did the ferry take to the island that day? $ \textbf{(A)}\ 585\qquad \textbf{(B)}\ 594\qquad \textbf{(C)}\ 672\qquad \textbf{(D)}\ 679\qquad \textbf{(E)}\ 694$

LMT Guts Rounds, 2015

[u]Round 9[/u] [b]p25.[/b] For how many nonempty subsets of $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$ is the sum of the elements divisble by $32$? [b]p26.[/b] America declared independence in $1776$. Take the sum of the cubes of the digits of $1776$ and let that equal $S_1$. Sum the cubes of the digits of $S_1$ to get $S_2$. Repeat this process $1776$ times. What is $S_{1776}$? [b]p27.[/b] Every Golden Grahams box contains a randomly colored toy car, which is one of four colors. What is the expected number of boxes you have to buy in order to obtain one car of each color? [u]Round 10[/u] [b]p28.[/b] Let $B$ be the answer to Question $29$ and $C$ be the answer to Question $30$. What is the sum of the square roots of $B$ and $C$? [b]p29.[/b] Let $A$ be the answer to Question $28$ and $C$ be the answer to Question $30$. What is the sum of the sums of the digits of $A$ and $C$? [b]p30.[/b] Let $A$ be the answer to Question $28$ and $B$ be the answer to Question $29$. What is $A + B$? [u]Round 11[/u] [b]p31.[/b] If $x + \frac{1}{x} = 4$, find $x^6 + \frac{1}{x^6}$. [b]p32.[/b] Given a positive integer $n$ and a prime $p$, there is are unique nonnegative integers $a$ and $b$ such that $n = p^b \cdot a$ and $gcd (a, p) = 1$. Let $v_p(n)$ denote this uniquely determined $a$. Let $S$ denote the set of the first 20 primes. Find $\sum_{ p \in S} v_p \left(1 + \sum^{100}_{i=0} p^i \right)$. [b]p33. [/b] Find the maximum value of n such that $n+ \sqrt{(n - 1) +\sqrt{(n - 2) + ... +\sqrt{1}}} < 49$ (Note: there would be $n - 1$ square roots and $n$ total terms). [u]Round 12[/u] [b]p34.[/b] Give two numbers $a$ and $b$ such that $2015^a < 2015! < 2015^b$. If you are incorrect you get $-5$ points; if you do not answer you get $0$ points; otherwise you get $\max \{20-0.02(|b - a| - 1), 0\}$ points, rounded down to the nearest integer. [b]p35.[/b] Twin primes are prime numbers whose difference is $2$. Let $(a, b)$ be the $91717$-th pair of twin primes, with $a < b$. Let $k = a^b$, and suppose that $j$ is the number of digits in the base $10$ representation of $k$. What is $j^5$? If the correct answer is $n$ and you say $m$, you will receive $\max \left(20 - | \log \left(| \frac{m}{n} |\right), 0 \right)$ points, rounded down to the nearest integer. [b]p36.[/b] Write down any positive integer. Let the sum of the valid submissions (i.e. positive integer submissions) for all teams be $S$. One team will be chosen randomly, according to the following distribution: if your team's submission is $n$, you will be chosen with probability $\frac{n}{S}$ . The amount of points that the chosen team will win is the greatest integer not exceeding $\min \{K, \frac{ 10000}{S} \}$. $K$ is a predetermined secret value. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3157009p28696627]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3157013p28696685]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Yasinsky Geometry Olympiad, 5

Let $X$ be an arbitrary point on side $BC$ of triangle ABC. Triangle $T$ formed by the bisectors of the angles $ABC$, $ACB$ and $AXC$. Prove that: a) the circumscribed circle of the triangle $T$ passes through the vertex $A$. b) the orthocenter of triangle $T$ lies on line $BC$. (Dmytro Prokopenko)

2019 Ecuador Juniors, 5

Bored of waiting for his plane to travel to the International Mathematics Olympiad, Daniel began to write powers of $2$ in a list in his notebook as follows: $\bullet$ Starting with the number $1$, Daniel writes the next power of $2$ at the end of his list and reverses the order of the numbers in the list. Let us call such a modification of the list, including the first step, a [i]move[/i]. The list in each of the first $4$ moves it looks like this: $$1 \,\,\,\, \to 2, 1 \,\,\,\, \,\,\,\, \to 4, 1, 2 \,\,\,\, \,\,\,\, \to 8, 2, 1, 4$$ Daniel plans to carry out operations until his plane arrives, but he is worried let the list grow too. After $2020$ moves, what is the sum of the first $1010$ numbers?

2024 CMIMC Integration Bee, 9

\[\int_0^1 \frac{1-x}{x^{5/2}+x^{3/2}+x^{1/2}}\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2000 Tournament Of Towns, 4

Each vertex of a convex polygon has integer coordinates, and no side of this polygon is horizontal or vertical. Prove that the sum of the lengths of the segments of lines of the form $x = m$, $m$ an integer, that lie within the polygon is equal to the sum of the lengths of the segments of lines of the form $y = n$, $n$ an integer, that lie within the polygon. (G Galperin)

2009 Math Prize For Girls Problems, 19

Let $ S$ be a set of $ 100$ points in the plane. The distance between every pair of points in $ S$ is different, with the largest distance being $ 30$. Let $ A$ be one of the points in $ S$, let $ B$ be the point in $ S$ farthest from $ A$, and let $ C$ be the point in $ S$ farthest from $ B$. Let $ d$ be the distance between $ B$ and $ C$ rounded to the nearest integer. What is the smallest possible value of $ d$?

1981 Putnam, B1

Tags: summation , limit
Find $$\lim_{n\to \infty} \frac{1}{n^5 } \sum_{h=1}^{n} \sum_{k=1}^{n} (5h^4 -18h^2 k^2 +5k^4).$$