This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

Champions Tournament Seniors - geometry, 2016.3

Let $t$ be a line passing through the vertex $A$ of the equilateral $ABC$, parallel to the side $BC$. On the side $AC$ arbitrarily mark the point $D$. Bisector of the angle $ABD$ intersects the line $t$at the point $E$. Prove that $BD=CD+AE$.

2012 Tournament of Towns, 2

One hundred points are marked in the plane, with no three in a line. Is it always possible to connect the points in pairs such that all fi fty segments intersect one another?

2013 Danube Mathematical Competition, 1

Determine the natural numbers $n\ge 2$ for which exist $x_1,x_2,...,x_n \in R^*$, such that $$x_1+x_2+...+x_n=\frac{1}{x_1}+\frac{1}{x_2}+...+\frac{1}{x_n}=0$$

2013 Sharygin Geometry Olympiad, 1

Tags: geometry
Let $ABC$ be an isosceles triangle with $AB = BC$. Point $E$ lies on the side $AB$, and $ED$ is the perpendicular from $E$ to $BC$. It is known that $AE = DE$. Find $\angle DAC$.

VI Soros Olympiad 1999 - 2000 (Russia), 10.2

$37$ points are arbitrarily marked on the plane. Prove that among them there must be either two points at a distance greater than $6$, or two points at a distance less than $1.5$.

2022 Greece Team Selection Test, 3

Find largest possible constant $M$ such that, for any sequence $a_n$, $n=0,1,2,...$ of real numbers, that satisfies the conditions : i) $a_0=1$, $a_1=3$ ii) $a_0+a_1+...+a_{n-1} \ge 3 a_n - a_{n+1}$ for any integer $n\ge 1$ to be true that $$\frac{a_{n+1}}{a_n} >M$$ for any integer $n\ge 0$.

1974 Chisinau City MO, 76

Altitude $AH$ and median $AM$ of the triangle $ABC$ satisfy the relation: $\angle ABM = \angle CBH$. Prove that triangle $ABC$ is isosceles or right-angled.

2023 Brazil EGMO Team Selection Test, 4

A cricket wants to move across a $2n \times 2n$ board that is entirely covered by dominoes, with no overlap. He jumps along the vertical lines of the board, always going from the midpoint of the vertical segment of a $1 \times 1$ square to another midpoint of the vertical segment, according to the rules: $(i)$ When the domino is horizontal, the cricket jumps to the opposite vertical segment (such as from $P_2$ to $P_3$); $(ii)$ When the domino is vertical downwards in relation to its position, the cricket jumps diagonally downwards (such as from $P_1$ to $P_2$); $(iii)$ When the domino is vertically upwards relative to its position, the cricket jumps diagonally upwards (such as from $P_3$ to $P_4$). The image illustrates a possible covering and path on the $4 \times 4$ board. Considering that the starting point is on the first vertical line and the finishing point is on the last vertical line, prove that, regardless of the covering of the board and the height at which the cricket starts its path, the path ends at the same initial height.

Ukraine Correspondence MO - geometry, 2015.8

On the sides $BC, AC$ and $AB$ of the equilateral triangle $ABC$ mark the points $D, E$ and $F$ so that $\angle AEF = \angle FDB$ and $\angle AFE = \angle EDC$. Prove that $DA$ is the bisector of the angle $EDF$.

1999 Turkey MO (2nd round), 2

Tags: geometry
Problem-2: Given a circle with center $O$, the two tangent lines from a point $S$ outside the circle touch the circle at points $P$ and $Q$. Line $SO$ intersects the circle at $A$ and $B$, with $B$ closer to $S$. Let $X$ be an interior point of minor arc $PB$, and let line $OS$ intersect lines $QX$ and $PX$ at $C$ and $D$, respectively. Prove that $\frac{1}{\left| AC \right|}+\frac{1}{\left| AD \right|}=\frac{2}{\left| AB \right|}$.

2009 Tournament Of Towns, 6

Tags:
Anna and Ben decided to visit Archipelago with $2009$ islands. Some pairs of islands are connected by boats which run both ways. Anna and Ben are playing during the trip: Anna chooses the first island on which they arrive by plane. Then Ben chooses the next island which they could visit. Thereafter, the two take turns choosing an island which they have not yet visited. When they arrive at an island which is connected only to islands they had already visited, whoever's turn to choose next would be the loser. Prove that Anna could always win, regardless of the way Ben played and regardless of the way the islands were connected. [i](12 points for Juniors and 10 points for Seniors)[/i]

1964 AMC 12/AHSME, 8

Tags:
The smaller root of the equation $ \left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}\right)+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right) =0$ is: ${{ \textbf{(A)}\ -\frac{3}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{5}{8}\qquad\textbf{(D)}\ \frac{3}{4} }\qquad\textbf{(E)}\ 1 } $

2015 Bulgaria National Olympiad, 4

Find all functions $f:\mathbb{R^+}\to\mathbb {R^+} $ such that for all $x,y\in R^+$ the followings hold: $i) $ $f (x+y)\ge f (x)+y $ $ii) $ $f (f (x))\le x $

2009 May Olympiad, 5

A game of solitaire strats of with $25$ cards. Some are facing up and sum are facing down. In each move a card that's facing up should me choosen, taken away, and turning over the cards next to it (if there are cards next to it). The game is won when you have accomplished to take all the $25$ cards from the table. If you initially start with $n$ cards facing up, find all the values of $n$ such that the game can be won. Explain how to win the game, independently from the initial placement of the cards facing up, justify your answer for why it is impossible to win with other values of $n$. Two cards are neighboring when one is immediately next to the other, to the left or right. Example: The card marked $A$ has two neighboring cards and the one marked with only a $B$ has only one neighboring card. After taking a card there is a hole left, such that the card marked $C$ has only one neighboring card, and the one marked $D$ does'nt have any.

2020 Argentina National Olympiad, 5

Determine the highest possible value of: $$S = a_1a_2a_3 + a_4a_5a_6 +... + a_{2017}a_{2018}a_{2019} + a_{2020}$$ where $(a_1, a_2, a_3,..., a_{2020})$ is a permutation of $(1,2,3,..., 2020)$. Clarification: In $S$, each term, except the last one, is the multiplication of three numbers.

2007 Pan African, 1

Solve the following system of equations for real $x,y$ and $z$: \begin{eqnarray*} x &=& \sqrt{2y+3}\\ y &=& \sqrt{2z+3}\\ z &=& \sqrt{2x+3}. \end{eqnarray*}

2000 National High School Mathematics League, 14

Tags: function
Function $f(x)=-\frac{1}{2}x^2+\frac{13}{2}$. If the minumum and maximum value of $f(x)$ are $2a$ and $2b$ respectively on $[a,b]$. Find $a,b$.

1996 Romania National Olympiad, 4

Let $A,B,C,D \in \mathcal{M}_n(\mathbb{C}),$ $A$ and $C$ invertible. Prove that if $A^k B = C^k D$ for any positive integer $k,$ then $B=D.$

2016 Israel Team Selection Test, 4

Find the greatest common divisor of all numbers of the form $(2^{a^2}\cdot 19^{b^2} \cdot 53^{c^2} + 8)^{16} - 1$ where $a,b,c$ are integers.

the 15th XMO, 2

Tags: inequalities
$n$ is a integer and $a_1, a_2, \ldots, a_n\in[-1,1]$ are real numbers with $ \sum_{i=1}^{n}a_{i}=0$ ,try to find the maximum value of $$ \sum_{1\leq i , j \leq n , i\ne j}|a_{i}-a^2_j|$$

1984 Swedish Mathematical Competition, 3

Prove that if $a,b$ are positive numbers, then $$\left( \frac{a+1}{b+1}\right)^{b+1} \ge \left( \frac{a}{b}\right)^{b}$$

2001 AMC 10, 23

A box contains exactly five chips, three red and two white. Chips are randomly removed one at a time without replacement until all the red chips are drawn or all the white chips are drawn. What is the probability that the last chip drawn is white? $ \displaystyle \textbf{(A)} \ \frac {3}{10} \qquad \textbf{(B)} \ \frac {2}{5} \qquad \textbf{(C)} \ \frac {1}{2} \qquad \textbf{(D)} \ \frac {3}{5} \qquad \textbf{(E)} \ \frac {7}{10}$

2021 JBMO TST - Turkey, 1

In an acute-angled triangle $ABC$, the circle with diameter $[AB]$ intersects the altitude drawn from vertex $C$ at a point $D$ and the circle with diameter $[AC]$ intersects the altitude drawn from vertex $B$ at a point $E$. Let the lines $BD$ and $CE$ intersect at $F$. Prove that $$AF\perp DE$$

Kvant 2019, M2548

A non-negative integer $n$ is called [I]redundant[/I] if the sum of all his proper divisors is bigger than $n$. Prove that for each non-negative integer $N$ there are $N$ consecutive redundant non-negative integers. [I]Proposed by V. Bragin[/I]

1979 IMO Shortlist, 16

Let $K$ denote the set $\{a, b, c, d, e\}$. $F$ is a collection of $16$ different subsets of $K$, and it is known that any three members of $F$ have at least one element in common. Show that all $16$ members of $F$ have exactly one element in common.