This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1986 China National Olympiad, 3

Let $Z_1,Z_2,\cdots ,Z_n$ be complex numbers satisfying $|Z_1|+|Z_2|+\cdots +|Z_n|=1$. Show that there exist some among the $n$ complex numbers such that the modulus of the sum of these complex numbers is not less than $1/6$.

2001 China Team Selection Test, 1

Tags: algebra
For a given natural number $n > 3$, the real numbers $x_1, x_2, \ldots, x_n, x_{n + 1}, x_{n + 2}$ satisfy the conditions $0 < x_1 < x_2 < \cdots < x_n < x_{n + 1} < x_{n + 2}$. Find the minimum possible value of \[\frac{(\sum _{i=1}^n \frac{x_{i + 1}}{x_i})(\sum _{j=1}^n \frac{x_{j + 2}}{x_{j + 1}})}{(\sum _{k=1}^n \frac{x_{k + 1} x_{k + 2}}{x_{k + 1}^2 + x_k x_{k + 2}})(\sum _{l=1}^n \frac{x_{l + 1}^2 + x_l x_{l + 2}}{x_l x_{l + 1}})}\] and find all $(n + 2)$-tuplets of real numbers $(x_1, x_2, \ldots, x_n, x_{n + 1}, x_{n + 2})$ which gives this value.

2009 Belarus Team Selection Test, 1

On R a binary algebraic operation ''*'' is defined which satisfies the following two conditions: i) for all $a,b \in R$, there exists a unique $x \in R$ such that $x *a=b$ (write $x=b/a$) ii) $(a*b)*c= (a*c)* (b*c)$ for all $a,b,c \in R$ a) Is this operation necesarily commutative (i.e. $a*b=b*a$ for all $a,b \in R$) ? b) Prove that $(a/b)/c = (a/c) / (b/c)$ and $(a/b)*c = (a*c) / (b*c)$ for all $a,b,c \in R$. A. Mirotin

2019 Caucasus Mathematical Olympiad, 2

In a triangle $ABC$ let $I$ be the incenter. Prove that the circle passing through $A$ and touching $BI$ at $I$, and the circle passing through $B$ and touching $AI$ at $I$, intersect at a point on the circumcircle of $ABC$.

2021 Taiwan APMO Preliminary First Round, 4

Let $n$ be a positive integer. All numbers $m$ which are coprime to $n$ all satisfy $m^6\equiv 1\pmod n$. Find the maximum possible value of $n$.

1989 All Soviet Union Mathematical Olympiad, 500

An insect is on a square ceiling side $1$. The insect can jump to the midpoint of the segment joining it to any of the four corners of the ceiling. Show that in $8$ jumps it can get to within $1/100$ of any chosen point on the ceiling

2002 Romania National Olympiad, 1

For any number $n\in\mathbb{N},n\ge 2$, denote by $P(n)$ the number of pairs $(a,b)$ whose elements are of positive integers such that \[\frac{n}{a}\in (0,1),\quad \frac{a}{b}\in (1,2)\quad \text{and}\quad \frac{b}{n}\in (2,3). \] $a)$ Calculate $P(3)$. $b)$ Find $n$ such that $P(n)=2002$.

2008 iTest Tournament of Champions, 2

Tags:
Let $A$ be the number of $12$-digit words that can be formed by from the alphabet $\{0,1,2,3,4,5,6\}$ if each pair of neighboring digits must differ by exactly $1$. Find the remainder when $A$ is divided by $2008$.

2009 Indonesia TST, 4

Let $ n>1$ be an odd integer and define: \[ N\equal{}\{\minus{}n,\minus{}(n\minus{}1),\dots,\minus{}1,0,1,\dots,(n\minus{}1),n\}.\] A subset $ P$ of $ N$ is called [i]basis[/i] if we can express every element of $ N$ as the sum of $ n$ different elements of $ P$. Find the smallest positive integer $ k$ such that every $ k\minus{}$elements subset of $ N$ is basis.

2025 Thailand Mathematical Olympiad, 3

Tags: inequalities
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$

2024 IFYM, Sozopol, 3

Tags: geometry
Given a parallelogram \(ABCD\). Let \(\ell_1\) be the line through \(D\), parallel to \(AC\), and \(\ell_2\) the external bisector of \(\angle ACD\). The lines \(\ell_1\) and \(\ell_2\) intersect at \(E\). The lines \(\ell_1\) and \(AB\) intersect at \(F\), and the line \(\ell_2\) intersects the internal bisector of \(\angle BAC\) at \(X\). The line \(BX\) intersects the circumcircle of triangle \(EFX\) at a second point \(Y\). The internal bisector of \(\angle ACD\) intersects the circumcircle of triangle \(ACX\) at a second point \(Z\). Prove that the quadrilateral \(DXYZ\) is inscribed in a circle.

2024 Sharygin Geometry Olympiad, 9

Let $ABCD$ ($AD \parallel BC$) be a trapezoid circumscribed around a circle $\omega$, which touches the sides $AB, BC, CD, $ and $AD$ at points $P, Q, R, S$ respectively. The line passing through $P$ and parallel to the bases of the trapezoid meets $QR$ at point $X$. Prove that $AB, QS$ and $DX$ concur.

2006 China Team Selection Test, 2

Given positive integer $n$, find the biggest real number $C$ which satisfy the condition that if the sum of the reciprocals of a set of integers (They can be the same.) that are greater than $1$ is less than $C$, then we can divide the set of numbers into no more than $n$ groups so that the sum of reciprocals of every group is less than $1$.

1985 IMO Longlists, 73

Tags: geometry
Let $A_1A_2,B_1B_2, C_1C_2$ be three equal segments on the three sides of an equilateral triangle. Prove that in the triangle formed by the lines $B_2C_1, C_2A_1,A_2B_1$, the segments $B_2C_1, C_2A_1,A_2B_1$ are proportional to the sides in which they are contained.

2005 Thailand Mathematical Olympiad, 19

Let $P(x)$ be a monic polynomial of degree $4$ such that for $k = 1, 2, 3$, the remainder when $P(x)$ is divided by $x - k$ is equal to $k$. Find the value of $P(4) + P(0)$.

JBMO Geometry Collection, 2021

Tags: geometry
Let $ABC$ be an acute scalene triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to the side $BC$. The lines $BC$ and $AO$ intersect at $E$. Let $s$ be the line through $E$ perpendicular to $AO$. The line $s$ intersects $AB$ and $AC$ at $K$ and $L$, respectively. Denote by $\omega$ the circumcircle of triangle $AKL$. Line $AD$ intersects $\omega$ again at $X$. Prove that $\omega$ and the circumcircles of triangles $ABC$ and $DEX$ have a common point.

2011 China Second Round Olympiad, 10

A sequence $a_n$ satisfies $a_1 =2t-3$ ($t \ne 1,-1$), and $a_{n+1}=\dfrac{(2t^{n+1}-3)a_n+2(t-1)t^n-1}{a_n+2t^n-1}$. [list] [b][i]i)[/i][/b] Find $a_n$, [b][i]ii)[/i][/b] If $t>0$, compare $a_{n+1}$ with $a_n$.[/list]

2015 AMC 8, 4

Tags:
The Centerville Middle School chess team consists of two boys and three girls. A photographer wants to take a picture of the team to appear in the local newspaper. She decides to have them sit in a row with a boy at each end and the three girls in the middle. How many such arrangements are possible? $\textbf{(A) }2\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad \textbf{(E) }12$

2019 Czech and Slovak Olympiad III A, 3

Let $a,b,c,n$ be positive integers such that the following conditions hold (i) numbers $a,b,c,a+b+c$ are pairwise coprime, (ii) number $(a+b)(b+c)(c+a)(a+b+c)(ab+bc+ca)$ is a perfect $n$-th power. Prove, that the product $abc$ can be expressed as a difference of two perfect $n$-th powers.

2019 IFYM, Sozopol, 6

There are $n$ kids. From each two at least one of them has sent an SMS to the other. For each kid $A$, among the kids on which $A$ has sent an SMS, exactly 10% of them have sent an SMS to $A$. Determine the number of possible three-digit values of $n$.

2020 Malaysia IMONST 2, 2

Tags: algebra , fraction
Prove that \[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +\frac{1}{2019}-\frac{1}{2020}=\frac{1}{1011}+\frac{1}{1012}+\cdots +\frac{1}{2020}\]

2005 MOP Homework, 3

Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that (a) $f(1)=1$ (b) $f(n+2)+(n^2+4n+3)f(n)=(2n+5)f(n+1)$ for all $n \in \mathbb{N}$. (c) $f(n)$ divides $f(m)$ if $m>n$.

2011 Peru IMO TST, 2

Let $A_1A_2 \ldots A_n$ be a convex polygon. Point $P$ inside this polygon is chosen so that its projections $P_1, \ldots , P_n$ onto lines $A_1A_2, \ldots , A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1, \ldots , X_n$ on sides $A_1A_2, \ldots , A_nA_1$ respectively, \[\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1.\] [i]Proposed by Nairi Sedrakyan, Armenia[/i]

2003 Italy TST, 3

Tags: function , algebra
Determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfy \[f(f(x)+y)=2x+f(f(y)-x)\quad\text{for all real}\ x,y. \]

2006 Moldova National Olympiad, 11.2

Function $f: [a,b]\to\mathbb{R}$, $0<a<b$ is continuous on $[a,b]$ and differentiable on $(a,b)$. Prove that there exists $c\in(a,b)$ such that \[ f'(c)=\frac1{a-c}+\frac1{b-c}+\frac1{a+b}. \]