Found problems: 85335
2025 Sharygin Geometry Olympiad, 8
The diagonals of a cyclic quadrilateral $ABCD$ meet at point $P$. Points $K$ and $L$ lie on $AC$, $BD$ respectively in such a way that $CK=AP$ and $DL=BP$. Prove that the line joining the common points of circles $ALC$ and $BKD$ passes through the mass-center of $ABCD$.
Proposed by:V.Konyshev
2009 District Olympiad, 2
Numbers from $1$ to $100$ are written on the board. Is it possible to cross $10$ numbers in such way, that we couldn't select 10 numbers from rest which would form arithmetic progression?
2000 Croatia National Olympiad, Problem 4
Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.
2019 Pan-African Shortlist, G3
Let $ABCD$ be a cyclic quadrilateral with its diagonals intersecting at $E$. Let $M$ be the midpoint of $AB$. Suppose that $ME$ is perpendicular to $CD$. Show that either $AC$ is perpendicular to $BD$, or $AB$ is parallel to $CD$.
1960 Putnam, B6
Any positive integer $n$ can be written in the form $n=2^{k}(2l+1)$ with $k,l$ positive integers. Let $a_n =e^{-k}$ and $b_n = a_1 a_2 a_3 \cdots a_n.$ Prove that
$$\sum_{n=1}^{\infty} b_n$$
converges.
2016 Purple Comet Problems, 7
Positive integers m and n are both greater than 50, have a least common multiple equal to 480, and have a
greatest common divisor equal to 12. Find m + n.
2020-2021 OMMC, 3
Define $f(x)$ as $\frac{x^2-x-2}{x^2+x-6}$. $f(f(f(f(1))))$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p,q$. Find $10p+q$.
2014 Tuymaada Olympiad, 2
The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear.
[i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]
2007 Moldova Team Selection Test, 2
Find all polynomials $f\in \mathbb{Z}[X]$ such that if $p$ is prime then $f(p)$ is also prime.
Kharkiv City MO Seniors - geometry, 2016.11.5
The circle $\omega$ passes through the vertices $B$ and $C$ of triangle $ABC$ and intersects its sides $AC,AB$ at points $A,E$, respectively. On the ray $BD$, a point $K$ such that $BK = AC$ is chosen , and on the ray $CE$, a point $L$ such that $CL = AB$ is chosen. Prove that the center $O$ of the circumscribed circle of the triangle $AKL$ lies on the circle $\omega$.
2019 CMIMC, 8
Consider the following graph algorithm (where $V$ is the set of vertices and $E$ the set of edges in $G$).
$\textbf{procedure }\textsc{s}(G)$
$\qquad \textbf{if } |V| = 0\textbf{ then return true}$
$\qquad \textbf{for }(u,v)\textbf{ in }E\textbf{ do}$
$\qquad\qquad H\gets G-u-v$
$\qquad\qquad\textbf{if } \textsc{s}(H)\textbf{ then return true}$
$\qquad\textbf{return false}$
Here $G - u - v$ means the subgraph of $G$ which does not contain vertices $u,v$ and all edges using them. How many graphs $G$ with vertex set $\{1,2,3,4,5,6\}$ and [i]exactly[/i] $6$ edges satisfy $s(G)$ being true?
2019 LIMIT Category B, Problem 12
Find the number of rational solutions of the following equations (i.e., rational $x$ and $y$ satisfy the equations)
$$x^2+y^2=2$$$$x^2+y^2=3$$$\textbf{(A)}~2\text{ and }2$
$\textbf{(B)}~2\text{ and }0$
$\textbf{(C)}~2\text{ and infinitely many}$
$\textbf{(D)}~\text{Infinitely many and }0$
Kvant 2023, M2757
Let $p{}$ be a prime number. There are $p{}$ integers $a_0,\ldots,a_{p-1}$ around a circle. In one move, it is allowed to select some integer $k{}$ and replace the existing numbers via the operation $a_i\mapsto a_i-a_{i+k}$ where indices are taken modulo $p{}.$ Find all pairs of natural numbers $(m, n)$ with $n>1$ such that for any initial set of $p{}$ numbers, after performing any $m{}$ moves, the resulting $p{}$ numbers will all be divisible by $n{}.$
[i]Proposed by P. Kozhevnikov[/i]
2012 Indonesia TST, 2
Let $\omega$ be a circle with center $O$, and let $l$ be a line not intersecting $\omega$. $E$ is a point on $l$ such that $OE$ is perpendicular with $l$. Let $M$ be an arbitrary point on $M$ different from $E$. Let $A$ and $B$ be distinct points on the circle $\omega$ such that $MA$ and $MB$ are tangents to $\omega$. Let $C$ and $D$ be the foot of perpendiculars from $E$ to $MA$ and $MB$ respectively. Let $F$ be the intersection of $CD$ and $OE$. As $M$ moves, determine the locus of $F$.
2001 German National Olympiad, 1
Determine all real numbers $q$ for which the equation $x^4 -40x^2 +q = 0$ has four real solutions which form an arithmetic progression
2016 CHMMC (Fall), 9
In quadrilateral $ABCD$, $AB = DB$ and $AD = BC$. If $\angle ABD = 36^{\circ}$ and $\angle BCD = 54^{\circ}$, find $\angle ADC$ in degrees.
2022 AIME Problems, 15
Two externally tangent circles $\omega_1$ and $\omega_2$ have centers $O_1$ and $O_2$, respectively. A third circle $\Omega$ passing through $O_1$ and $O_2$ intersects $\omega_1$ at $B$ and $C$ and $\omega_2$ at $A$ and $D$, as shown. Suppose that $AB = 2$, $O_1O_2 = 15$, $CD = 16$, and $ABO_1CDO_2$ is a convex hexagon. Find the area of this hexagon.
[asy]
import geometry;
size(10cm);
point O1=(0,0),O2=(15,0),B=9*dir(30);
circle w1=circle(O1,9),w2=circle(O2,6),o=circle(O1,O2,B);
point A=intersectionpoints(o,w2)[1],D=intersectionpoints(o,w2)[0],C=intersectionpoints(o,w1)[0];
filldraw(A--B--O1--C--D--O2--cycle,0.2*red+white,black);
draw(w1);
draw(w2);
draw(O1--O2,dashed);
draw(o);
dot(O1);
dot(O2);
dot(A);
dot(D);
dot(C);
dot(B);
label("$\omega_1$",8*dir(110),SW);
label("$\omega_2$",5*dir(70)+(15,0),SE);
label("$O_1$",O1,W);
label("$O_2$",O2,E);
label("$B$",B,N+1/2*E);
label("$A$",A,N+1/2*W);
label("$C$",C,S+1/4*W);
label("$D$",D,S+1/4*E);
label("$15$",midpoint(O1--O2),N);
label("$16$",midpoint(C--D),N);
label("$2$",midpoint(A--B),S);
label("$\Omega$",o.C+(o.r-1)*dir(270));
[/asy]
LMT Speed Rounds, 2016.25
Let $ABCD$ be a trapezoid with $AB\parallel DC$. Let $M$ be the midpoint of $CD$. If $AD\perp CD, AC\perp BM,$ and $BC\perp BD$, find $\frac{AB}{CD}$.
[i]Proposed by Nathan Ramesh
PEN H Problems, 89
Prove that the number $99999+111111\sqrt{3}$ cannot be written in the form $(A+B\sqrt{3})^2$, where $A$ and $B$ are integers.
1977 Bulgaria National Olympiad, Problem 5
Let $Q(x)$ be a non-zero polynomial and $k$ be a natural number. Prove that the polynomial $P(x) = (x-1)^kQ(x)$ has at least $k+1$ non-zero coefficients.
2016 Belarus Team Selection Test, 4
There is a graph with 30 vertices. If any of 26 of its vertices with their outgoiing edges are deleted, then the remained graph is a connected graph with 4 vertices.
What is the smallest number of the edges in the initial graph with 30 vertices?
2010 BMO TST, 1
[b]a) [/b]Is the number $ 1111\cdots11$ (with $ 2010$ ones) a prime number?
[b]b)[/b] Prove that every prime factor of $ 1111\cdots11$ (with $ 2011$ ones) is of the form $ 4022j\plus{}1$ where $ j$ is a natural number.
2009 Romania Team Selection Test, 2
Consider a matrix whose entries are integers. Adding a same integer to all entries on a same row, or on a same column, is called an operation. It is given that, for infinitely many positive integers $n$, one can obtain, through a finite number of operations, a matrix having all entries divisible by $n$. Prove that, through a finite number of operations, one can obtain the null matrix.
2015 German National Olympiad, 5
Let $ABCD$ be a convex quadrilateral such that the circle with diameter $AB$ touches the line $CD$. Prove that that the circle with diameter $CD$ touches the line $AB$ if and only if $BC$ and $AD$ are parallel.
2020 Israel Olympic Revenge, P3
For each positive integer $n$, define $f(n)$ to be the least positive integer for which the following holds:
For any partition of $\{1,2,\dots, n\}$ into $k>1$ disjoint subsets $A_1, \dots, A_k$, [u]all of the same size[/u], let $P_i(x)=\prod_{a\in A_i}(x-a)$. Then there exist $i\neq j$ for which
\[\deg(P_i(x)-P_j(x))\geq \frac{n}{k}-f(n)\]
a) Prove that there is a constant $c$ so that $f(n)\le c\cdot \sqrt{n}$ for all $n$.
b) Prove that for infinitely many $n$, one has $f(n)\ge \ln(n)$.