This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2001 Switzerland Team Selection Test, 2

If $a,b$, and $c$ are the sides of a triangle, prove the inequality $\sqrt{a+b-c}+\sqrt{c+a-b}+\sqrt{b+c-a } \le \sqrt{a}+\sqrt{b}+\sqrt{c}$. When does equality occur?

2024 HMIC, 4

Given a positive integer $n$, let $[n] = \{1,2,\dots,n\}$. Let [list] [*] $a_n$ denote the number of functions $f: [n] \to [n]$ such that $f(f(i))\ge i$ for all $i$; and [*] $b_n$ denote the number of ordered set partitions of $[n]$, i.e., the number of ways to pick an integer $k$ and an ordered $k$-tuple of pairwise disjoint nonempty sets $(A_1,\dots,A_k)$ whose union is $[n]$. [/list] Prove that $a_n=b_n$. [i]Derek Liu[/i]

2012 International Zhautykov Olympiad, 1

Do there exist integers $m, n$ and a function $f\colon \mathbb R \to \mathbb R$ satisfying simultaneously the following two conditions? $\bullet$ i) $f(f(x))=2f(x)-x-2$ for any $x \in \mathbb R$; $\bullet$ ii) $m \leq n$ and $f(m)=n$.

2016 ASDAN Math Tournament, 3

Tags: algebra test
Real numbers $x,y,z$ form an arithmetic sequence satisfying \begin{align*} x+y+z&=6\\ xy+yz+zx&=10. \end{align*} What is the absolute value of their common difference?

2007 Argentina National Olympiad, 1

Find all the prime numbers $p$ and $q$ such that $ p^2+q=37q^2+p $. Clarification: $1$ is not a prime number.

2004 Croatia Team Selection Test, 3

A line intersects a semicircle with diameter $AB$ and center $O$ at $C$ and $D$, and the line $AB$ at $M$, where $MB < MA$ and $MD < MC.$ If the circumcircles of the triangles $AOC$ and $DOB$ meet again at $K,$ prove that $\angle MKO$ is right.

2015 Ukraine Team Selection Test, 12

For a given natural $n$, we consider the set $A\subset \{1,2, ..., n\}$, which consists of at least $\left[\frac{n+1}{2}\right]$ items. Prove that for $n \ge 2015$ the set $A$ contains a three-element arithmetic sequence.

2023 Taiwan TST Round 2, N

Find all polynomials $P$ with real coefficients satisfying that there exist infinitely many pairs $(m, n)$ of coprime positives integer such that $P(\frac{m}{n})=\frac{1}{n}$. [i] Proposed by usjl[/i]

2010 F = Ma, 1

Tags:
If the graph is a graph of POSITION vs. TIME, then the squirrel has the greatest speed at what time(s) or during what time interval(s)? (A) From A to B (B) From B to C only (C) From B to D (D) From C to D only (E) From D to E

2005 Estonia Team Selection Test, 3

Find all pairs $(x, y)$ of positive integers satisfying the equation $(x + y)^x = x^y$.

2018 ASDAN Math Tournament, 3

Tags: algebra test
The integers $a, b,$ and $c$ form a strictly increasing geometric sequence. Suppose that $abc = 216$. What is the maximum possible value of $a + b + c$?

2018 PUMaC Individual Finals B, 3

Tags: geometry
Let $ABC$ be a triangle. Construct three circles $k_1$, $k_2$, and $k_3$ with the same radius such that they intersect each other at a common point $O$ inside the triangle $ABC$ and $k_1\cap k_2=\{A,O\}$, $k_2 \cap k_3=\{B,O\}$, $k_3\cap k_1=\{C,O\}$. Let $t_a$ be a common tangent of circles $k_1$ and $k_2$ such that $A$ is closer to $t_a$ than $O$. Define $t_b$ and $t_c$ similarly. Those three tangents determine a triangle $MNP$ such that the triangle $ABC$ is inside the triangle $MNP$. Prove that the area of $MNP$ is at least $9$ times the area of $ABC$.

1968 Kurschak Competition, 2

There are $4n$ segments of unit length inside a circle radius $n$. Show that given any line $L$ there is a chord of the circle parallel or perpendicular to $L$ which intersects at least two of the $4n$ segments.

2019 Turkey MO (2nd round), 5

Let $f:\{1,2,\dots,2019\}\to\{-1,1\}$ be a function, such that for every $k\in\{1,2,\dots,2019\}$, there exists an $\ell\in\{1,2,\dots,2019\}$ such that $$ \sum_{i\in\mathbb{Z}:(\ell-i)(i-k)\geqslant 0} f(i)\leqslant 0. $$ Determine the maximum possible value of $$ \sum_{i\in\mathbb{Z}:1\leqslant i\leqslant 2019} f(i). $$

2024 Chile TST Ibero., 3

Find all natural numbers \( n \) for which it is possible to construct an \( n \times n \) square using only tetrominoes like the one below:

2023 Estonia Team Selection Test, 2

Tags:
For any natural number $n{}$ and positive integer $k{}$, we say that $n{}$ is $k-good$ if there exist non-negative integers $a_1,\ldots, a_k$ such that $$n=a_1^2+a_2^4+a_3^8+\ldots+a_k^{2^k}.$$ Is there a positive integer $k{}$ for which every natural number is $k-good$?

2015 Online Math Open Problems, 6

Tags:
We delete the four corners of a $8 \times 8$ chessboard. How many ways are there to place eight non-attacking rooks on the remaining squares? [i]Proposed by Evan Chen[/i]

2008 JBMO Shortlist, 5

Find all triples $(x, y, z)$ of real positive numbers, which satisfy the system $\begin{cases} \frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3 \\ x + y + z \le 12 \end{cases}$

2020 AMC 8 -, 13

Tags:
Jamal has a drawer containing $6$ green socks, $18$ purple socks, and $12$ orange socks. After adding more purple socks, Jamal noticed that there is now a $60\%$ chance that a sock randomly selected from the drawer is purple. How many purple socks did Jamal add? $\textbf{(A)}\ 6\qquad~~\textbf{(B)}\ 9\qquad~~\textbf{(C)}\ 12\qquad~~\textbf{(D)}\ 18\qquad~~\textbf{(E)}\ 24$

2024 LMT Fall, 9

Tags: team
Five friends named Ella, Jacob, Muztaba, Peter, and William are suspicious of their friends for having secret group chats. Call a group of three people a "secret chat" if there is a chat with just the three of them (there cannot be multiple chats with the same three people). They have the following perfectly logical conversation in this order: [list] [*] Ella: I am part of $5$ secret chats. [*] Jacob: I know all of the secret chats that Ella is in. [*] Muztaba: Peter is in all but one of my secret chats. [*] Peter: I am in a secret chat that William cannot know exists. [*] William: I share exactly two secret chats with Jacob and two secret chats with Peter. [/list] Let $E$ be the number of chats Ella is in, $J$ the number of chats Jacob is in, $M$ the number of chats Muztaba is in, $P$ the number of chats Peter is in, and $W$ the number of chats William is in. Find $10000E$ $+$ $1000J$ $+$ $100M$ $+$ $10P+W$.

1985 IMO Longlists, 63

Let $x_n = \sqrt[2]{2+\sqrt[3]{3+\cdots+\sqrt[n]{n}}}.$ Prove that \[x_{n+1}-x_n <\frac{1}{n!} \quad n=2,3,\cdots\]

2004 AMC 12/AHSME, 23

The polynomial $ x^3\minus{}2004x^2\plus{}mx\plus{}n$ has integer coefficients and three distinct positive zeros. Exactly one of these is an integer, and it is the sum of the other two. How many values of $ n$ are possible? $ \textbf{(A)}\ 250,\!000 \qquad \textbf{(B)}\ 250,\!250 \qquad \textbf{(C)}\ 250,\!500 \qquad \textbf{(D)}\ 250,\!750 \qquad \textbf{(E)}\ 251,\!000$

2000 National High School Mathematics League, 10

Tags: conic , ellipse
In ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, $F$ is its left focal point, $A$ is its right vertex, $B$ is its upper vertex. If the eccentricity of the ellipse is $\frac{\sqrt5-1}{2}$, then $\angle ABF=$________.

2019 Jozsef Wildt International Math Competition, W. 42

For $p$, $q$, $l$ strictly positive real numbers, consider the following problem: for $y \geq 0$ fixed, determine the values $x \geq 0$ such that $x^p - lx^q \leq y$. Denote by $S(y)$ the set of solutions of this problem. Prove that if one has $p < q$, $\epsilon \in (0, l^\frac{1}{p-q})$, $0 \leq x \leq \epsilon$ and $x \in S(y)$, then $$x\leq ky^{\delta},\ \text{where}\ k=\epsilon\left(\epsilon^p-l\epsilon^q\right)^{-\frac{1}{p}}\ \text{and}\ \delta=\frac{1}{p}$$

2009 Germany Team Selection Test, 3

Find all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that $ \forall x,y,z \in \mathbb{R}$ we have: If \[ x^3 \plus{} f(y) \cdot x \plus{} f(z) \equal{} 0,\] then \[ f(x)^3 \plus{} y \cdot f(x) \plus{} z \equal{} 0.\]