Found problems: 85335
2022 Purple Comet Problems, 16
A rectangular box has width $12$ inches, length $16$ inches, and height $\tfrac{m}{n}$ inches, where $m$ and $n$ are relatively prime positive integers. Three rectangular sides of the box meet at a corner of the box. The center points of those three rectangular sides are the vertices of a triangle with area $30$ square inches. Find $m + n.$
2020 USMCA, 15
The number $2020!$ can be expressed as $7^k \cdot m$, where $k, m$ are integers and $m$ is not divisible by $7$. Find the remainder when $m$ is divided by $49$.
1949 Moscow Mathematical Olympiad, 169
Construct a convex polyhedron of equal “bricks” shown in Figure.
[img]https://cdn.artofproblemsolving.com/attachments/6/6/75681a90478f978665b6874d0c0c9441ea3bd2.gif[/img]
2025 Kyiv City MO Round 1, Problem 1
Find all three-digit numbers that are \( 5 \) times greater than the product of their digits.
2019 Vietnam TST, P4
Find all triplets of positive integers $(x, y, z)$ such that $2^x+1=7^y+2^z$.
2014 China Team Selection Test, 6
For positive integer $k>1$, let $f(k)$ be the number of ways of factoring $k$ into product of positive integers greater than $1$ (The order of factors are not countered, for example $f(12)=4$, as $12$ can be factored in these $4$ ways: $12,2\cdot 6,3\cdot 4, 2\cdot 2\cdot 3$.
Prove: If $n$ is a positive integer greater than $1$, $p$ is a prime factor of $n$, then $f(n)\leq \frac{n}{p}$
2012 Sharygin Geometry Olympiad, 12
Let $O$ be the circumcenter of an acute-angled triangle $ABC$. A line passing through $O$ and parallel to $BC$ meets $AB$ and $AC$ in points $P$ and $Q$ respectively. The sum of distances from $O$ to $AB$ and $AC$ is equal to $OA$. Prove that $PB + QC = PQ$.
2003 National Olympiad First Round, 7
Starting with the sequence $\text{AAAIEE}$, we replace $\text{AIE}$ with $\text{EA}$, $\text{AE}$ with $\text{IE}$, $\text{E}$ with $\text{AI}$. After repeating replace operations many times, which of the following cannot be got?
$
\textbf{(A)}\ \text{AIAIIAI}
\qquad\textbf{(B)}\ \text{AIAIAI}
\qquad\textbf{(C)}\ \text{AIAAA}
\qquad\textbf{(D)}\ \text{AIAA}
\qquad\textbf{(E)}\ \text{None of the preceding}
$
2016 Auckland Mathematical Olympiad, 5
In a city at every square exactly three roads meet, one is called street, one is an avenue, and one is a crescent. Most roads connect squares but three roads go outside of the city. Prove that among the roads going out of the city one is a street, one is an avenue and one is a crescent.
LMT Team Rounds 2021+, B8
Find the number of arithmetic sequences $a_1,a_2,a_3$ of three nonzero integers such that the sum of the terms in the sequence is equal to the product of the terms in the sequence.
[i]Proposed by Sammy Charney[/i]
2012 Harvard-MIT Mathematics Tournament, 4
During the weekends, Eli delivers milk in the complex plane. On Saturday, he begins at $z$ and delivers milk to houses located at $z^3,z^5,z^7,\ldots,z^{2013}$ in that order; on Sunday, he begins at $1$ and delivers milk to houses located at $z^2,z^4,z^6,\ldots,z^{2012}$ in that order. Eli always walks directly (in a straight line) between two houses. If the distance he must travel from his starting point to the last house is $\sqrt{2012}$ on both days, find the real part of $z^2$.
LMT Guts Rounds, 2020 F20
Cyclic quadrilateral $ABCD$ has $AC=AD=5, CD=6,$ and $AB=BC.$ If the length of $AB$ can be expressed as $\frac{a\sqrt{b}}{c}$ where $a,c$ are relatively prime positive integers and $b$ is square-fre,e evaluate $a+b+c.$
[i]Proposed by Ada Tsui[/i]
2020 Princeton University Math Competition, B1
You are walking along a road of constant width with sidewalks on each side. You can only walk on the sidewalks or cross the road perpendicular to the sidewalk. Coming up on a turn, you realize that you are on the “outside” of the turn; i.e., you are taking the longer way around the turn. The turn is a circular arc. Assuming that your destination is on the same side of the road as you are currently, let $\theta$ be the smallest turn angle, in radians, that would justify crossing the road and then crossing back after the turn to take the shorter total path to your destination. What is $\lfloor 100 \cdot \theta \rfloor$ ?
2020 Ecuador NMO (OMEC), 5
In triangle $ABC$, $D$ is the middle point of side $BC$ and $M$ is a point on segment $AD$ such that $AM=3MD$.
The barycenter of $ABC$ and $M$ are on the inscribed circumference of $ABC$.
Prove that $AB+AC>3BC$.
1972 Swedish Mathematical Competition, 6
$a_1,a_2,a_3,\dots$ and $b_1,b_2,b_3,\dots$ are sequences of positive integers. Show that we can find $m < n$ such that $a_m \leq a_n$ and $b_m \leq b_n$.
1996 IMO Shortlist, 6
Let $ n$ be an even positive integer. Prove that there exists a positive inter $ k$ such that
\[ k \equal{} f(x) \cdot (x\plus{}1)^n \plus{} g(x) \cdot (x^n \plus{} 1)\]
for some polynomials $ f(x), g(x)$ having integer coefficients. If $ k_0$ denotes the least such $ k,$ determine $ k_0$ as a function of $ n,$ i.e. show that $ k_0 \equal{} 2^q$ where $ q$ is the odd integer determined by $ n \equal{} q \cdot 2^r, r \in \mathbb{N}.$
Note: This is variant A6' of the three variants given for this problem.
2008 Junior Balkan Team Selection Tests - Romania, 1
Let $ p$ be a prime number, $ p\not \equal{} 3$, and integers $ a,b$ such that $p\mid a+b$ and $ p^2\mid a^3 \plus{} b^3$. Prove that $ p^2\mid a \plus{} b$ or $ p^3\mid a^3 \plus{} b^3$.
2021 Regional Olympiad of Mexico West, 3
The sequence of real numbers $a_1, a_2, a_3, ...$ is defined as follows: $a_1 = 2019$, $a_2 = 2020$, $a_3 = 2021$ and for all $n \ge 1$
$$a_{n+3} = 5a^6_{n+2} + 3a^3_{n+1} + a^2_n.$$
Show that this sequence does not contain numbers of the form $m^6$ where $m$ is a positive integer.
Brazil L2 Finals (OBM) - geometry, 2017.1
The points $X, Y,Z$ are marked on the sides $AB, BC,AC$ of the triangle $ABC$, respectively. Points $A',B', C'$ are on the $XZ, XY, YZ$ sides of the triangle $XYZ$, respectively, so that $\frac{AB}{A'B'} = \frac{AB}{A'B'} =\frac{BC}{B'C'}= 2$ and $ABB'A',BCC'B',ACC'A'$ are trapezoids in which the sides of the triangle $ABC$ are bases.
a) Determine the ratio between the area of the trapezium $ABB'A'$ and the area of the triangle $A'B'X$.
b) Determine the ratio between the area of the triangle $XYZ$ and the area of the triangle $ABC$.
1991 Arnold's Trivium, 76
Investigate the behaviour at $t\to\infty$ of the solution of the problem
\[u_t+(u\sin x)_x=\epsilon u_{xx},\;u|_{t=0}=1,\;\epsilon\ll1\]
MMATHS Mathathon Rounds, 2021
[u]Round 4[/u]
[b]p10.[/b] How many divisors of $10^{11}$ have at least half as many divisors that $10^{11}$ has?
[b]p11.[/b] Let $f(x, y) = \frac{x}{y}+\frac{y}{x}$ and $g(x, y) = \frac{x}{y}-\frac{y}{x} $. Then, if $\underbrace{f(f(... f(f(}_{2021 fs} f(f(1, 2), g(2,1)), 2), 2)... , 2), 2)$ can be expressed in the form $a + \frac{b}{c}$, where $a$, $b$,$c$ are nonnegative integers such that $b < c$ and $gcd(b,c) = 1$, find $a + b + \lceil (\log_2 (\log_2 c)\rceil $
[b]p12.[/b] Let $ABC$ be an equilateral triangle, and let$ DEF$ be an equilateral triangle such that $D$, $E$, and $F$ lie on $AB$, $BC$, and $CA$, respectively. Suppose that $AD$ and $BD$ are positive integers, and that $\frac{[DEF]}{[ABC]}=\frac{97}{196}$. The circumcircle of triangle $DEF$ meets $AB$, $BC$, and $CA$ again at $G$, $H$, and $I$, respectively. Find the side length of an equilateral triangle that has the same area as the hexagon with vertices $D, E, F, G, H$, and $I$.
[u]Round 5 [/u]
[b]p13.[/b] Point $X$ is on line segment $AB$ such that $AX = \frac25$ and $XB = \frac52$. Circle $\Omega$ has diameter $AB$ and circle $\omega$ has diameter $XB$. A ray perpendicular to $AB$ begins at $X$ and intersects $\Omega$ at a point $Y$. Let $Z$ be a point on $\omega$ such that $\angle YZX = 90^o$. If the area of triangle $XYZ$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a, b) = 1$, find $a + b$.
[b]p14.[/b] Andrew, Ben, and Clayton are discussing four different songs; for each song, each person either likes or dislikes that song, and each person likes at least one song and dislikes at least one song. As it turns out, Andrew and Ben don't like any of the same songs, but Clayton likes at least one song that Andrew likes and at least one song that Ben likes! How many possible ways could this have happened?
[b]p15.[/b] Let triangle $ABC$ with circumcircle $\Omega$ satisfy $AB = 39$, $BC = 40$, and $CA = 25$. Let $P$ be a point on arc $BC$ not containing $A$, and let $Q$ and $R$ be the reflections of $P$ in $AB$ and $AC$, respectively. Let $AQ$ and $AR$ meet $\Omega$ again at $S$ and $T$, respectively. Given that the reflection of $QR$ over $BC$ is tangent to $\Omega$ , $ST$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a,b)= 1$. Find $a + b$.
PS. You should use hide for answers. Rounds 1-3 have been posted [url=https://artofproblemsolving.com/community/c4h3131401p28368159]here [/url] and 6-7 [url=https://artofproblemsolving.com/community/c4h3131434p28368604]here [/url],Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1977 IMO, 1
Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$
2017 Thailand TSTST, 2
Let $f, g$ be bijections on $\{1, 2, 3, \dots, 2016\}$. Determine the value of $$\sum_{i=1}^{2016}\sum_{j=1}^{2016}[f(i)-g(j)]^{2559}.$$
1997 Croatia National Olympiad, Problem 3
The number $2^{1997}$ has $m$ decimal digits, while the number $5^{1997}$ has $n$ digits. Evaluate $m+n$.
2006 Estonia Math Open Junior Contests, 3
Let ABCD be a parallelogram, M the midpoint of AB and N the intersection of CD
and the angle bisector of ABC. Prove that CM and BN are perpendicular iff AN is the angle bisector of DAB.