This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2018 BMT Spring, 14

Tags:
Let $F_1 = 0$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$. Compute $$\sum_{n=1}^\infty \frac{\sum_{n=1}^\infty F_i}{3^n}.$$

2017 Moldova Team Selection Test, 6

Let $a,b,c$ be positive real numbers that satisfy $a+b+c=abc$. Prove that $$\sqrt{(1+a^2)(1+b^2)}+\sqrt{(1+b^2)(1+c^2)}+\sqrt{(1+a^2)(1+c^2)}-\sqrt{(1+a^2)(1+b^2)(1+c^2)} \ge 4.$$

2011 Morocco National Olympiad, 2

Tags: quadratic , algebra
Prove that the equation $x^{2}+p|x| = qx - 1 $ has 4 distinct real solutions if and only if $p+|q|+2<0$ ($p$ and $q$ are two real parameters).

2023 MOAA, 6

Tags:
Let $b$ be a positive integer such that 2032 has 3 digits when expressed in base $b$. Define the function $S_k(n)$ as the sum of the digits of the base $k$ representation of $n$. Given that $S_b(2032)+S_{b^2}(2032) = 14$, find $b$. [i]Proposed by Anthony Yang[/i]

1997 Iran MO (3rd Round), 3

There are $30$ bags and there are $100$ similar coins in each bag (coins in each bag are similar, coins of different bags can be different). The weight of each coin is an one digit number in grams. We have a digital scale which can weigh at most $999$ grams in each weighing. Using this scale, we want to find the weight of coins of each bag. [b](a)[/b] Show that this operation is possible by $10$ times of weighing, and [b](b)[/b] It's not possible by $9$ times of weighing.

2001 Moldova National Olympiad, Problem 7

Tags: algebra , sequence
Set $a_n=\frac{2n}{n^4+3n^2+4},n\in\mathbb N$. Prove that the sequence $S_n=a_1+a_2+\ldots+a_n$ is upperbounded and lowerbounded and find its limit as $n\to\infty$.

2001 German National Olympiad, 2

Determine the maximum possible number of points you can place in a rectangle with lengths $14$ and $28$ such that any two of those points are more than $10$ apart from each other.

2000 Belarus Team Selection Test, 5.2

Let $n,k$ be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists a positive integer $m$ which is divisible by $n$ and the sum of its digits in decimal representation is $k$.

1993 AMC 8, 11

Tags:
Consider this histogram of the scores for $81$ students taking a test: [asy] unitsize(12); draw((0,0)--(26,0)); draw((1,1)--(25,1)); draw((3,2)--(25,2)); draw((5,3)--(23,3)); draw((5,4)--(21,4)); draw((7,5)--(21,5)); draw((9,6)--(21,6)); draw((11,7)--(19,7)); draw((11,8)--(19,8)); draw((11,9)--(19,9)); draw((11,10)--(19,10)); draw((13,11)--(19,11)); draw((13,12)--(19,12)); draw((13,13)--(17,13)); draw((13,14)--(17,14)); draw((15,15)--(17,15)); draw((15,16)--(17,16)); draw((1,0)--(1,1)); draw((3,0)--(3,2)); draw((5,0)--(5,4)); draw((7,0)--(7,5)); draw((9,0)--(9,6)); draw((11,0)--(11,10)); draw((13,0)--(13,14)); draw((15,0)--(15,16)); draw((17,0)--(17,16)); draw((19,0)--(19,12)); draw((21,0)--(21,6)); draw((23,0)--(23,3)); draw((25,0)--(25,2)); for (int a = 1; a < 13; ++a) { draw((2*a,-.25)--(2*a,.25)); } label("$40$",(2,-.25),S); label("$45$",(4,-.25),S); label("$50$",(6,-.25),S); label("$55$",(8,-.25),S); label("$60$",(10,-.25),S); label("$65$",(12,-.25),S); label("$70$",(14,-.25),S); label("$75$",(16,-.25),S); label("$80$",(18,-.25),S); label("$85$",(20,-.25),S); label("$90$",(22,-.25),S); label("$95$",(24,-.25),S); label("$1$",(2,1),N); label("$2$",(4,2),N); label("$4$",(6,4),N); label("$5$",(8,5),N); label("$6$",(10,6),N); label("$10$",(12,10),N); label("$14$",(14,14),N); label("$16$",(16,16),N); label("$12$",(18,12),N); label("$6$",(20,6),N); label("$3$",(22,3),N); label("$2$",(24,2),N); label("Number",(4,8),N); label("of Students",(4,7),N); label("$\textbf{STUDENT TEST SCORES}$",(14,18),N); [/asy] The median is in the interval labeled $\text{(A)}\ 60 \qquad \text{(B)}\ 65 \qquad \text{(C)}\ 70 \qquad \text{(D)}\ 75 \qquad \text{(E)}\ 80$

2021 Kazakhstan National Olympiad, 5

Find all functions $f : \mathbb{R^{+}}\to \mathbb{R^{+}}$ such that $$f(x)^2=f(xy)+f(x+f(y))-1$$ for all $x, y\in \mathbb{R^{+}}$

2012 AIME Problems, 2

The terms of an arithmetic sequence add to $715$. The first term of the sequence is increased by $1$, the second term is increased by $3$, the third term is increased by $5$, and in general, the $k$th term is increased by the $k$th odd positive integer. The terms of the new sequence add to $836$. Find the sum of the first, last, and middle terms of the original sequence.

1976 AMC 12/AHSME, 26

Tags:
[asy] size(150); dotfactor=4; draw(circle((0,0),4)); draw(circle((10,-6),3)); pair O,A,P,Q; O = (0,0); A = (10,-6); P = (-.55, -4.12); Q = (10.7, -2.86); dot("$O$", O, NE); dot("$O'$", A, SW); dot("$P$", P, SW); dot("$Q$", Q, NE); draw((2*sqrt(2),2*sqrt(2))--(10 + 3*sqrt(2)/2, -6 + 3*sqrt(2)/2)--cycle); draw((-1.68*sqrt(2),-2.302*sqrt(2))--(10 - 2.6*sqrt(2)/2, -6 - 3.4*sqrt(2)/2)--cycle); draw(P--Q--cycle); //Credit to happiface for the diagram[/asy] In the adjoining figure, every point of circle $\mathit{O'}$ is exterior to circle $\mathit{O}$. Let $\mathit{P}$ and $\mathit{Q}$ be the points of intersection of an internal common tangent with the two external common tangents. Then the length of $PQ$ is $\textbf{(A) }\text{the average of the lengths of the internal and external common tangents}\qquad$ $\textbf{(B) }\text{equal to the length of an external common tangent if and only if circles }\mathit{O}\text{ and }\mathit{O'}\text{ have equal radii}\qquad$ $\textbf{(C) }\text{always equal to the length of an external common tangent}\qquad$ $\textbf{(D) }\text{greater than the length of an external common tangent}\qquad$ $\textbf{(E) }\text{the geometric mean of the lengths of the internal and external common tangents}$

2018 AIME Problems, 3

Tags:
Kathy has $5$ red cards and $5$ green cards. She shuffles the $10$ cards and lays out $5$ of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

1997 All-Russian Olympiad Regional Round, 10.5

Tags: algebra
Given a set of $100$ different numbers such that if each number in the set is replaced by the sum of the others, the same set will be obtained. Prove that the product of numbers in a set is positive.

2002 Moldova National Olympiad, 3

Tags:
Consider a circle $ \Gamma(O,R)$ and a point $ P$ found in the interior of this circle. Consider a chord $ AB$ of $ \Gamma$ that passes through $ P$. Suppose that the tangents to $ \Gamma$ at the points $ A$ and $ B$ intersect at $ Q$. Let $ M\in QA$ and $ N\in QB$ s.t. $ PM\perp QA$ and $ PN\perp QB$. Prove that the value of $ \frac {1}{PN} \plus{} \frac {1}{PM}$ doesn't depend of choosing the chord $ AB$.

1999 China National Olympiad, 3

There are $99$ space stations. Each pair of space stations is connected by a tunnel. There are $99$ two-way main tunnels, and all the other tunnels are strictly one-way tunnels. A group of $4$ space stations is called [i]connected[/i] if one can reach each station in the group from every other station in the group without using any tunnels other than the $6$ tunnels which connect them. Determine the maximum number of connected groups.

2010 Stanford Mathematics Tournament, 8

Tags:
Find all solutions of $\frac{a}{x}=\frac{x-a}{a}$ for $x$.

2007 AMC 8, 15

Tags:
Let $a$, $b$ and $c$ be numbers with $0 < a < b < c$. Which of the following is impossible? $\textbf{(A)}\ a+c<b \qquad \textbf{(B)}\ a\cdot b<c \qquad \textbf{(C)}\ a+b<c \qquad \textbf{(D)}\ a\cdot c<b \qquad \textbf{(E)}\ \frac{b}{c}=a$

2012 Princeton University Math Competition, A5

Tags: algebra
What is the smallest natural number $n$ greater than $2012$ such that the polynomial $f(x) =(x^6 + x^4)^n - x^{4n} - x^6$ is divisible by $g(x) = x^4 + x^2 + 1$?

2013 Austria Beginners' Competition, 3

Let $a$ and $ b$ be real numbers with $0\le a, b\le 1$. Prove that $$\frac{a}{b + 1}+\frac{b}{a + 1}\le 1$$ When does equality holds? (K. Czakler, GRG 21, Vienna)

1993 Spain Mathematical Olympiad, 5

Given a 4×4 grid of points, the points at two opposite corners are denoted $A$ and $D$. We need to choose two other points $ B$ and $C$ such that the six pairwise distances of these four points are all distinct. (a) How many such quadruples of points are there? (b) How many such quadruples of points are non-congruent? (c) If each point is assigned a pair of coordinates $(x_i,y_i)$, prove that the sum of the expressions $|x_i-x_j |+|y_i-y_j|$ over all six pairs of points in a quadruple is constant.

1988 AMC 8, 23

Tags: search
Maria buys computer disks at a price of 4 for 5 dollars and sells them at a price of 3 for 5 dollars. How many computer disks must she sell in order to make a profit of 100 dolars? $ \text{(A)}\ 100\qquad\text{(B)}\ 120\qquad\text{(C)}\ 200\qquad\text{(D)}\ 240\qquad\text{(E)}\ 1200 $

2005 Baltic Way, 16

Let $n$ be a positive integer, let $p$ be prime and let $q$ be a divisor of $(n + 1)^p - n^p$. Show that $p$ divides $q - 1$.

2007 Indonesia MO, 6

Tags: algebra , function
Find all triples $ (x,y,z)$ of real numbers which satisfy the simultaneous equations \[ x \equal{} y^3 \plus{} y \minus{} 8\] \[y \equal{} z^3 \plus{} z \minus{} 8\] \[ z \equal{} x^3 \plus{} x \minus{} 8.\]

2010 Irish Math Olympiad, 3

Tags: inequalities
Suppose $x,y,z$ are positive numbers such that $x+y+z=1$. Prove that (a) $xy+yz+xz\ge 9xyz$; (b) $xy+yz+xz<\frac{1}{4}+3xyz$;