Found problems: 85335
LMT Guts Rounds, 2020 F33
Let $\omega_1$ and $\omega_2$ be two circles that intersect at two points: $A$ and $B$. Let $C$ and $E$ be on $\omega_1$, and $D$ and $F$ be on $\omega_2$ such that $CD$ and $EF$ meet at $B$ and the three lines $CE$, $DF$, and $AB$ concur at a point $P$ that is closer to $B$ than $A$. Let $\Omega$ denote the circumcircle of $\triangle DEF$. Now, let the line through $A$ perpendicular to $AB$ hit $EB$ at $G$, $GD$ hit $\Omega$ at $J$, and $DA$ hit $\Omega$ again at $I$. A point $Q$ on $IE$ satisfies that $CQ=JQ$. If $QJ=36$, $EI=21$, and $CI=16$, then the radius of $\Omega$ can be written as $\frac{a\sqrt{b}}{c}$ where $a$, $b$, and $c$ are positive integers, $b$ is not divisible by the square of a prime, and $\gcd(a, c) = 1$. Find $a+b+c$.
[i]Proposed by Kevin Zhao[/i]
KoMaL A Problems 2017/2018, A. 706
Find all positive integer $k$s for which such $f$ exists and unique:
$f(mn)=f(n)f(m)$ for $n, m \in \mathbb{Z^+}$
$f^{n^k}(n)=n$ for all $n \in \mathbb{Z^+}$ for which $f^x (n)$ means the n times operation of function $f$(i.e. $f(f(...f(n))...)$)
2020 BMT Fall, 4
Let $a, b$, and $c$ be integers that satisfy $2a + 3b = 52$, $3b + c = 41$, and $bc = 60$. Find $a + b + c$
2022 Utah Mathematical Olympiad, 1
Let $n\ge 2$ be an integer. Thibaud the Tiger lays $n$ $2\times 2$ overlapping squares out on a table, such that the centers of the squares are equally spaced along the line $y=x$ from $(0,0)$ to $(1,1)$ (including the two endpoints). For example, for $n=4$ the resulting figure is shown below, and it covers a total area of $\frac{23}{3}$.
[asy]
fill((0,0)--(2,0)--(2,.333333333333)--(0.333333333333,0.333333333333)--(0.333333333333,2)--(0,2)--cycle, lightgrey);
fill((0.333333333333,0.333333333333)--(2.333333333333,0.333333333333)--(2.333333333333,.6666666666666)--(0.666666666666,0.666666666666666)--(0.66666666666,2.33333333333)--(.333333333333,2.3333333333333)--cycle, lightgrey);
fill((0.6666666666666,.6666666666666)--(2.6666666666666,.6666666666)--(2.6666666666666,.6666666666666)--(2.6666666666666,1)--(1,1)--(1,2.6666666666666)--(0.6666666666666,2.6666666666666)--cycle, lightgrey);
fill((1,1)--(3,1)--(3,3)--(1,3)--cycle, lightgrey);
draw((0.33333333333333,2)--(2,2)--(2,0.333333333333), dashed+grey+linewidth(0.4));
draw((0.66666666666666,2.3333333333333)--(2.3333333333333,2.3333333333333)--(2.3333333333333,0.66666666666), dashed+grey+linewidth(0.4));
draw((1,2.666666666666)--(2.666666666666,2.666666666666)--(2.666666666666,1), dashed+grey+linewidth(0.4));
draw((0,0)--(2,0)--(2,.333333333333)--(0.333333333333,0.333333333333)--(0.333333333333,2)--(0,2)--(0,0),linewidth(0.4));
draw((0.333333333333,0.333333333333)--(2.333333333333,0.333333333333)--(2.333333333333,.6666666666666)--(0.666666666666,0.666666666666666)--(0.66666666666,2.33333333333)--(.333333333333,2.3333333333333)--(0.333333333333,.333333333333),linewidth(0.4));
draw((0.6666666666666,.6666666666666)--(2.6666666666666,.6666666666)--(2.6666666666666,.6666666666666)--(2.6666666666666,1)--(1,1)--(1,2.6666666666666)--(0.6666666666666,2.6666666666666)--(0.6666666666666,0.6666666666666),linewidth(0.4));
draw((1,1)--(3,1)--(3,3)--(1,3)--cycle,linewidth(0.4));
[/asy]
Find, with proof, the minimum $n$ such that the figure covers an area of at least $\sqrt{63}$.
2023 Harvard-MIT Mathematics Tournament, 10
Let $x_0 = x_{101} = 0$. The numbers $x_1, x_2,...,x_{100}$ are chosen at random from the interval $[0, 1]$ uniformly and independently. Compute the probability that $2x_i \ge x_{i-1} + x_{i+1}$ for all $i = 1, 2,..., 100.$
2002 Federal Math Competition of S&M, Problem 1
Real numbers $x,y,z$ satisfy the inequalities
$$x^2\le y+z,\qquad y^2\le z+x\qquad z^2\le x+y.$$Find the minimum and maximum possible values of $z$.
1971 IMO, 2
Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.
2017 Bosnia And Herzegovina - Regional Olympiad, 3
Does there exist positive integer $n$ such that sum of all digits of number $n(4n+1)$ is equal to $2017$
2014-2015 SDML (High School), 6
Let $f\left(x\right)=x^2-14x+52$ and $g\left(x\right)=ax+b$, where $a$ and $b$ are positive. Find $a$, given that $f\left(g\left(-5\right)\right)=3$ and $f\left(g\left(0\right)\right)=103$.
$\text{(A) }2\qquad\text{(B) }5\qquad\text{(C) }7\qquad\text{(D) }10\qquad\text{(E) }17$
2018 Romania National Olympiad, 2
Let $a, b, c, d$ be natural numbers such that $a + b + c + d = 2018$. Find the minimum value of the expression:
$$E = (a-b)^2 + 2(a-c)^2 + 3(a-d)^2+4(b-c)^2 + 5(b-d)^2 + 6(c-d)^2.$$
2023 Regional Olympiad of Mexico West, 4
Prove that you can pick $15$ distinct positive integers between $1$ and $2023$, such that each one of them and the sum between some of them is never a perfect square, nor a perfect cube or any other greater perfect power.
2000 Greece National Olympiad, 4
The subsets $A_1,A_2,\ldots ,A_{2000}$ of a finite set $M$ satisfy $|A_i|>\frac{2}{3}|M|$ for each $i=1,2,\ldots ,2000$. Prove that there exists $m\in M$ which belongs to at least $1334$ of the subsets $A_i$.
2010 Romania Team Selection Test, 4
Let $X$ and $Y$ be two finite subsets of the half-open interval $[0, 1)$ such that $0 \in X \cap Y$ and $x + y = 1$ for no $x \in X$ and no $y \in Y$. Prove that the set $\{x + y - \lfloor x + y \rfloor : x \in X \textrm{ and } y \in Y\}$ has at least $|X| + |Y| - 1$ elements.
[i]***[/i]
2018 India PRMO, 4
The equation $166\times 56 = 8590$ is valid in some base $b \ge 10$ (that is, $1, 6, 5, 8, 9, 0$ are digits in base $b$ in the above equation). Find the sum of all possible values of $b \ge 10$ satisfying the equation.
2016 Belarus Team Selection Test, 4
On a circle there are $2n+1$ points, dividing it into equal arcs ($n\ge 2$). Two players take turns to erase one point. If after one player's turn, it turned out that all the triangles formed by the remaining points on the circle were obtuse, then the player wins and the game ends.
Who has a winning strategy: the starting player or his opponent?
2011 Princeton University Math Competition, A6 / B7
A sequence of real numbers $\{a_n\}_{n = 1}^\infty (n=1,2,...)$ has the following property:
\begin{align*}
6a_n+5a_{n-2}=20+11a_{n-1}\ (\text{for }n\geq3).
\end{align*}
The first two elements are $a_1=0, a_2=1$. Find the integer closest to $a_{2011}$.
2019 Caucasus Mathematical Olympiad, 3
Points $A'$ and $B'$ lie inside the parallelogram $ABCD$ and points $C'$ and $D'$ lie outside of it, so that all sides of 8-gon $AA'BB'CC'DD'$ are equal. Prove that $A'$, $B'$, $C'$, $D'$ are concyclic.
1988 Czech And Slovak Olympiad IIIA, 2
If for the coefficients of equation $x^3+ax^2+bx+c=0$ whose roots are all real, holds, $a^2= 2(b+1)$ then $|a-c|\le 2$. Prove it.
2018 Irish Math Olympiad, 8
Let $M$ be the midpoint of side $BC$ of an equilateral triangle $ABC$. The point $D$ is on $CA$ extended such that $A$ is between $D$ and $C$. The point $E$ is on $AB$ extended such that $B$ is between $A$ and $E$, and $|MD| = |ME|$. The point $F$ is the intersection of $MD$ and $AB$. Prove that $\angle BFM = \angle BME$.
2003 Miklós Schweitzer, 8
Let $f_1, f_2, \ldots$ be continuous real functions on the real line. Is it true that if the series $\sum_{n=1}^{\infty} f_n(x)$ is divergent for every $x$, then this holds also true for any typical choice of the signs in the sum (i.e. the set of those $\{ \epsilon _n\}_{n=1}^{\infty} \in \{ +1, -1\}^{\mathbb{N}}$ sequences, for which there series $\sum_{n=1}^{\infty} \epsilon_nf_n(x)$ is convergent at least at one point $x$, forms a subset of first category within the set $\{+1,-1\}^{\mathbb{N}} $)?
(translated by L. Erdős)
2002 Junior Balkan Team Selection Tests - Moldova, 3
Let $ABC$ be a an acute triangle. Points $A_1, B_1$ and $C_1$ are respectively the projections of the vertices $A, B$ and $C$ on the opposite sides of the triangle, the point $H$ is the orthocenter of the triangle, and the point $P$ is the middle of the segment $[AH]$. The lines $BH$ and $A_1C_1$, $P B_1$ and $AB$ intersect respectively at the points $M$ and $N$. Prove that the lines $MN$ and $BC$ are perpendicular.
2022 USAMTS Problems, 5
A lattice point is a point on the coordinate plane with integer coefficients. Prove or disprove : there exists a finite set $S$ of lattice points such that for every line $l$ in the plane with slope $0,1,-1$, or undefined, either $l$ and $S$ intersect at exactly $2022$ points, or they do not intersect.
2002 AMC 10, 5
Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region.
[asy]unitsize(.3cm);
defaultpen(linewidth(.8pt));
path c=Circle((0,2),1);
filldraw(Circle((0,0),3),grey,black);
filldraw(Circle((0,0),1),white,black);
filldraw(c,white,black);
filldraw(rotate(60)*c,white,black);
filldraw(rotate(120)*c,white,black);
filldraw(rotate(180)*c,white,black);
filldraw(rotate(240)*c,white,black);
filldraw(rotate(300)*c,white,black);[/asy]$ \textbf{(A)}\ \pi \qquad \textbf{(B)}\ 1.5\pi \qquad \textbf{(C)}\ 2\pi \qquad \textbf{(D)}\ 3\pi \qquad \textbf{(E)}\ 3.5\pi$
2010 IMO Shortlist, 7
Three circular arcs $\gamma_1, \gamma_2,$ and $\gamma_3$ connect the points $A$ and $C.$ These arcs lie in the same half-plane defined by line $AC$ in such a way that arc $\gamma_2$ lies between the arcs $\gamma_1$ and $\gamma_3.$ Point $B$ lies on the segment $AC.$ Let $h_1, h_2$, and $h_3$ be three rays starting at $B,$ lying in the same half-plane, $h_2$ being between $h_1$ and $h_3.$ For $i, j = 1, 2, 3,$ denote by $V_{ij}$ the point of intersection of $h_i$ and $\gamma_j$ (see the Figure below). Denote by $\widehat{V_{ij}V_{kj}}\widehat{V_{kl}V_{il}}$ the curved quadrilateral, whose sides are the segments $V_{ij}V_{il},$ $V_{kj}V_{kl}$ and arcs $V_{ij}V_{kj}$ and $V_{il}V_{kl}.$ We say that this quadrilateral is $circumscribed$ if there exists a circle touching these two segments and two arcs. Prove that if the curved quadrilaterals $\widehat{V_{11}V_{21}}\widehat{V_{22}V_{12}}, \widehat{V_{12}V_{22}}\widehat{V_{23}V_{13}},\widehat{V_{21}V_{31}}\widehat{V_{32}V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22}V_{32}}\widehat{V_{33}V_{23}}$ is circumscribed, too.
[i]Proposed by Géza Kós, Hungary[/i]
[asy]
pathpen=black;
size(400);
pair A=(0,0), B=(4,0), C=(10,0);
draw(L(A,C,0.3));
MP("A",A); MP("B",B); MP("C",C);
pair X=(5,-7);
path G1=D(arc(X,C,A));
pair Y=(5,7), Z=(9,6);
draw(Z--B--Y);
struct T {pair C;real r;};
T f(pair X, pair B, pair Y, pair Z)
{
pair S=unit(Y-B)+unit(Z-B);
real s=abs(sin(angle((Y-B)/(Z-B))/2));
real t=10, r=abs(X-A);
pair Q;
for(int k=0;k<30;++k)
{
Q=B+t*S;
t-=(abs(X-Q)-r)/abs(S)-s*t;
}
T T=new T;
T.C=Q; T.r=s*t*abs(S);
return T;
}
void g(pair Q, real r)
{
real t=0;
for(int k=0;k<30;++k)
{
X=(5,t);
t+=(abs(X-Q)+r-abs(X-A));
}
}
pair Z1=(1.07,6);
draw(B--Z1);
T T=f(X,B,Y,Z1);
draw(CR(T.C,T.r));
T T=f(X,B,Y,Z);
draw(CR(T.C,T.r));
g(T.C,T.r);
path G2=D(arc(X,C,A));
T T=f(X,B,Y,Z1);
draw(CR(T.C,T.r));
T=f(X,B,Y,Z);
draw(CR(T.C,T.r));
g(T.C,T.r);
path G3=D(arc(X,C,A));
pen p=black+fontsize(8);
MC("\gamma_1",G1,0.85,p);
MC("\gamma_2",G2,0.85,NNW,p);
MC("\gamma_3",G3,0.85,WNW,p);
MC("h_1",B--Z1,0.95,E,p);
MC("h_2",B--Y,0.95,E,p);
MC("h_3",B--Z,0.95,E,p);
path[] G={G1,G2,G3};
path[] H={B--Z1,B--Y,B--Z};
pair[][] al={{S+SSW,S+SSW,3*S},{SE,NE,NW},{2*SSE,2*SSE,2*E}};
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
MP("V_{"+string(i+1)+string(j+1)+"}",IP(H[i],G[j]),al[i][j],fontsize(8));[/asy]
2018 Thailand TSTST, 5
Find all triples of real numbers $(a, b, c)$ satisfying $$a+b+c=14, \quad a^2+b^2+c^2=84,\quad a^3+b^3+c^3=584.$$