This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1987 IMO Longlists, 6

Let f be a function that satisfies the following conditions: $(i)$ If $x > y$ and $f(y) - y \geq v \geq f(x) - x$, then $f(z) = v + z$, for some number $z$ between $x$ and $y$. $(ii)$ The equation $f(x) = 0$ has at least one solution, and among the solutions of this equation, there is one that is not smaller than all the other solutions; $(iii)$ $f(0) = 1$. $(iv)$ $f(1987) \leq 1988$. $(v)$ $f(x)f(y) = f(xf(y) + yf(x) - xy)$. Find $f(1987)$. [i]Proposed by Australia.[/i]

2003 AMC 10, 6

Tags: function
Define $ x \heartsuit y$ to be $ |x\minus{}y|$ for all real numbers $ x$ and $ y$. Which of the following statements is [b]not[/b] true? $\textbf{(A)}\ x \heartsuit y \equal{} y \heartsuit x \text{ for all } x \text{ and } y$ $\textbf{(B)}\ 2(x \heartsuit y) \equal{} (2x) \heartsuit (2y) \text{ for all } x \text{ and } y$ $\textbf{(C)}\ x \heartsuit 0 \equal{} x \text{ for all } x$ $\textbf{(D)}\ x \heartsuit x \equal{} 0 \text{ for all } x$ $\textbf{(E)}\ x \heartsuit y > 0 \text{ if } x \ne y$

PEN E Problems, 1

Prove that the number $512^{3} +675^{3}+ 720^{3}$ is composite.

2025 Kosovo National Mathematical Olympiad`, P4

Show that for any real numbers $a$ and $b$ different from $0$, the inequality $$\bigg \lvert \frac{a}{b} + \frac{b}{a}+ab \bigg \lvert \geq \lvert a+b+1 \rvert$$ holds. When is equality achieved?

2016 NIMO Problems, 5

Tags: geometry
A wall made of mirrors has the shape of $\triangle ABC$, where $AB = 13$, $BC = 16$, and $CA = 9$. A laser positioned at point $A$ is fired at the midpoint $M$ of $BC$. The shot reflects about $BC$ and then strikes point $P$ on $AB$. If $\tfrac{AM}{MP} = \tfrac{m}{n}$ for relatively prime positive integers $m, n$, compute $100m+n$. [i]Proposed by Michael Tang[/i]

2004 China Team Selection Test, 3

The largest one of numbers $ p_1^{\alpha_1}, p_2^{\alpha_2}, \cdots, p_t^{\alpha_t}$ is called a $ \textbf{Good Number}$ of positive integer $ n$, if $ \displaystyle n\equal{} p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, where $ p_1$, $ p_2$, $ \cdots$, $ p_t$ are pairwisely different primes and $ \alpha_1, \alpha_2, \cdots, \alpha_t$ are positive integers. Let $ n_1, n_2, \cdots, n_{10000}$ be $ 10000$ distinct positive integers such that the $ \textbf{Good Numbers}$ of $ n_1, n_2, \cdots, n_{10000}$ are all equal. Prove that there exist integers $ a_1, a_2, \cdots, a_{10000}$ such that any two of the following $ 10000$ arithmetical progressions $ \{ a_i, a_i \plus{} n_i, a_i \plus{} 2n_i, a_i \plus{} 3n_i, \cdots \}$($ i\equal{}1,2, \cdots 10000$) have no common terms.

2002 Romania National Olympiad, 1

Tags: inequalities
Let $ab+bc+ca=1$. Show that \[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\sqrt{3}+\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\]

2024 Baltic Way, 13

Let $ABC$ be an acute triangle with orthocentre $H$. Let $D$ be a point outside the circumcircle of triangle $ABC$ such that $\angle ABD=\angle DCA$. The reflection of $AB$ in $BD$ intersects $CD$ at $X$. The reflection of $AC$ in $CD$ intersects $BD$ at $Y$. The lines through $X$ and $Y$ perpendicular to $AC$ and $AB$, respectively, intersect at $P$. Prove that points $D$, $P$ and $H$ are collinear.

2025 Kyiv City MO Round 2, Problem 3

Tags: euler , geometry
On sides \( AB \) and \( AC \) of an acute-angled, non-isosceles triangle \( ABC \), points \( P \) and \( Q \) are chosen such that the center \( O_9 \) of the nine-point circle of \( \triangle ABC \) is the midpoint of segment \( PQ \). Let \( O \) be the circumcenter of \( \triangle ABC \). On the ray \( OP \) beyond \( P \), segment \( PX \) is marked such that \( PX = AQ \). On the ray \( OQ \) beyond \( Q \), segment \( QY \) is marked such that \( QY = AP \). Prove that the midpoint of side \( BC \), the midpoint of segment \( XY \), and the point \( O_9 \) are collinear. [i]The nine-point circle or the Euler circle[/i] of \( \triangle ABC \) is the circle passing through nine significant points of the triangle — the midpoints of the three sides, the feet of the three altitudes, and the midpoints of the segments connecting the orthocenter with the vertices of \( \triangle ABC \). [i]Proposed by Danylo Khilko[/i]

Kvant 2024, M2785

A finite set $S{}$ of $n{}$ points is given in the plane. No three points lie on the same line. The number of non-self-intersecting closed $n{}$-link polylines with vertices at these points will be denoted by $f(S).$ Prove that [list=a] [*]$f(S)>0$ for all sets $S{};$ [*]$f(S)=1$ if and only if all the points of $S{}$ lie on the convex hull of $S{};$ [*]if $f(S)>1$ then $f(S)\geqslant n-1$, with equality if and only if one point of $S$ lies inside the convex hull; [*]if exactly two points of $S{}$ lie inside the convex hull, then\[f(S)\geqslant\frac{(n-2)(n-3)}{2}.\] [/list]Let $n\geqslant 3.$ Denote by $F(n)$ the largest possible value of the function $f(S)$ over all admissible sets $S{}$ of $n{}$ points. Prove that \[F(n)\geqslant3\cdot 2^{(n-8)/3}.\][i]Proposed by E. Bakaev and D. Magzhanov[/i]

1997 Italy TST, 3

Determine all triples $(x,y, p)$ with $x$, $y$ positive integers and $p$ a prime number verifying the equation $p^x -y^p = 1$.

2019 International Zhautykov OIympiad, 3

Tags: geometry
Triangle $ABC$ is given. The median $CM$ intersects the circumference of $ABC$ in $N$. $P$ and $Q$ are chosen on the rays $CA$ and $CB$ respectively, such that $PM$ is parallel to $BN$ and $QM$ is parallel to $AN$. Points $X$ and $Y$ are chosen on the segments $PM$ and $QM$ respectively, such that both $PY$ and $QX$ touch the circumference of $ABC$. Let $Z$ be intersection of $PY$ and $QX$. Prove that, the quadrilateral $MXZY$ is circumscribed.

2017 Bosnia and Herzegovina Junior BMO TST, 3

Let $ABC$ be a triangle such that $\angle ABC = 90 ^{\circ}$. Let $I$ be an incenter of $ABC$ and let $F$, $D$ and $E$ be points where incircle touches sides $AB$, $BC$ and $AC$, respectively. If lines $CI$ and $EF$ intersect at point $M$ and if $DM$ and $AB$ intersect in $N$, prove that $AI=ND$

1995 May Olympiad, 5

We have $105$ coins, among which we know that there are three fake ones. Authentic coins have all the same weight, which is greater than that of the false ones, which also have the same weight. Determine from can $26$ authentic coins be selected by weighing only two in one two pan balance.

2001 Bulgaria National Olympiad, 1

Consider the sequence $\{a_n\}$ such that $a_0=4$, $a_1=22$, and $a_n-6a_{n-1}+a_{n-2}=0$ for $n\ge2$. Prove that there exist sequences $\{x_n\}$ and $\{y_n\}$ of positive integers such that \[ a_n=\frac{y_n^2+7}{x_n-y_n} \] for any $n\ge0$.

2005 AMC 10, 21

Tags:
For how many positive integers $ n$ does $ 1 \plus{} 2 \plus{} \cdots \plus{} n$ evenly divide from $ 6n$? $ \textbf{(A)}\ 3\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 7\qquad \textbf{(D)}\ 9\qquad \textbf{(E)}\ 11$

2007 Purple Comet Problems, 3

Tags: geometry
Square $ABCD$ has side length $36$. Point $E$ is on side $AB$ a distance $12$ from $B$, point $F$ is the midpoint of side $BC$, and point $G$ is on side $CD$ a distance $12$ from $C$. Find the area of the region that lies inside triangle $EFG$ and outside triangle $AFD$.

1989 All Soviet Union Mathematical Olympiad, 502

Show that for each integer $n > 0$, there is a polygon with vertices at lattice points and all sides parallel to the axes, which can be dissected into $1 \times 2$ (and / or $2 \times 1$) rectangles in exactly $n$ ways.

1985 Traian Lălescu, 1.2

Let $ p\ge 2 $ be a fixed natural number, and let the sequence of functions $ \left( f_n\right)_{n\ge 2}:[0,1]\longrightarrow\mathbb{R} $ defined as $ f_n (x)=f_{n-1}\left( f_1 (x)\right) , $ where $ f_1 (x)=\sqrt[p]{1-x^p} . $ Find $ a\in (0,1) $ such that: [b]a)[/b] exists $ b\ge a $ so that $ f_1:[a,b]\longrightarrow [a,b] $ is bijective. [b]b)[/b] $ \forall x\in [0,1]\quad\exists y\in [0,1]\quad m\in\mathbb{N}\implies \left| f_m(x)-f_m(y)\right| >a|x-y| $

2023 SEEMOUS, P1

Prove that if $A{}$ and $B{}$ are $n\times n$ matrices with complex entries which satisfy \[A=AB-BA+A^2B-2ABA+BA^2+A^2BA-ABA^2,\]then $\det(A)=0$.

2014 Contests, 1

suppose that $O$ is the circumcenter of acute triangle $ABC$. we have circle with center $O$ that is tangent too $BC$ that named $w$ suppose that $X$ and $Y$ are the points of intersection of the tangent from $A$ to $w$ with line $BC$($X$ and $B$ are in the same side of $AO$) $T$ is the intersection of the line tangent to circumcirle of $ABC$ in $B$ and the line from $X$ parallel to $AC$. $S$ is the intersection of the line tangent to circumcirle of $ABC$ in $C$ and the line from $Y$ parallel to $AB$. prove that $ST$ is tangent $ABC$.

2021 Centroamerican and Caribbean Math Olympiad, 2

Let $ABC$ be a triangle and let $\Gamma$ be its circumcircle. Let $D$ be a point on $AB$ such that $CD$ is parallel to the line tangent to $\Gamma$ at $A$. Let $E$ be the intersection of $CD$ with $\Gamma$ distinct from $C$, and $F$ the intersection of $BC$ with the circumcircle of $\bigtriangleup ADC$ distinct from $C$. Finally, let $G$ be the intersection of the line $AB$ and the internal bisector of $\angle DCF$. Show that $E,\ G,\ F$ and $C$ lie on the same circle.

2011 VJIMC, Problem 2

Tags: sequence , limit
Let $(a_n)^\infty_{n=1}$ be an unbounded and strictly increasing sequence of positive reals such that the arithmetic mean of any four consecutive terms $a_n,a_{n+1},a_{n+2},a_{n+3}$ belongs to the same sequence. Prove that the sequence $\frac{a_{n+1}}{a_n}$ converges and find all possible values of its limit.

2008 Mathcenter Contest, 3

Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[ n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality. [i]Proposed by Finbarr Holland, Ireland[/i]

2000 Belarus Team Selection Test, 2.4

Tags: area , geometry , ratio
In a triangle $ABC$ with $AC = b \ne BC = a$, points $E,F$ are taken on the sides $AC,BC$ respectively such that $AE = BF =\frac{ab}{a+b}$. Let $M$ and $N$ be the midpoints of $AB$ and $EF$ respectively, and $P$ be the intersection point of the segment $EF$ with the bisector of $\angle ACB$. Find the ratio of the area of $CPMN$ to that of $ABC$.