Found problems: 85335
1972 AMC 12/AHSME, 3
If $x=\dfrac{1-i\sqrt{3}}{2}$ where $i=\sqrt{-1}$, then $\dfrac{1}{x^2-x}$ is equal to
$\textbf{(A) }-2\qquad\textbf{(B) }-1\qquad\textbf{(C) }1+i\sqrt{3}\qquad\textbf{(D) }1\qquad \textbf{(E) }2$
2013 ELMO Shortlist, 5
There is a $2012\times 2012$ grid with rows numbered $1,2,\dots 2012$ and columns numbered $1,2,\dots, 2012$, and we place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has a positive integer thickness. (in micrometers!)
(a) Show that there exist $2012^2$ unique integers $a_{i,j}$ where $i,j \in [1,2012]$ such that for all $x,y\in [1,2012]$, the sum \[ \sum _{i=1}^{x} \sum_{j=1}^{y} a_{i,j} \] is equal to the sum of the thicknesses of all the napkins that cover the grid square in row $x$ and column $y$.
(b) Show that if we use at most $500,000$ napkins, at least half of the $a_{i,j}$ will be $0$.
[i]Proposed by Ray Li[/i]
2024 Romanian Master of Mathematics, 5
Let $BC$ be a fixed segment in the plane, and let $A$ be a variable point in the plane not on the line $BC$. Distinct points $X$ and $Y$ are chosen on the rays $CA^\to$ and $BA^\to$, respectively, such that $\angle CBX = \angle YCB = \angle BAC$. Assume that the tangents to the circumcircle of $ABC$ at $B$ and $C$ meet line $XY$ at $P$ and $Q$, respectively, such that the points $X$, $P$, $Y$ and $Q$ are pairwise distinct and lie on the same side of $BC$. Let $\Omega_1$ be the circle through $X$ and $P$ centred on $BC$. Similarly, let $\Omega_2$ be the circle through $Y$ and $Q$ centred on $BC$. Prove that $\Omega_1$ and $\Omega_2$ intersect at two fixed points as $A$ varies.
[i]Daniel Pham Nguyen, Denmark[/i]
2021 Latvia TST, 1.3
Given isosceles $\triangle ABC$ with $AB = AC$ and $\angle BAC = 22^{\circ}$. On the side $BC$ point $D$ is chosen such that $BD = 2CD$. The foots of perpendiculars from $B$ to lines $AD$ and $AC$ are points $E$, $F$ respectively. Find with the proof value of the angle $\angle CEF$.
2002 IMC, 9
For each $n\geq 1$ let
$$a_{n}=\sum_{k=0}^{\infty}\frac{k^{n}}{k!}, \;\; b_{n}=\sum_{k=0}^{\infty}(-1)^{k}\frac{k^{n}}{k!}.$$
Show that $a_{n}\cdot b_{n}$ is an integer.
1998 Belarus Team Selection Test, 3
Let $1=d_1<d_2<d_3<...<d_k=n$ be all different divisors of positive integer $n$ written in ascending order. Determine all $n$ such that $$d_7^2+d_{10}^2=(n/d_{22})^2.$$
1982 IMO Longlists, 5
Among all triangles with a given perimeter, find the one with the maximal radius of its incircle.
2014 Brazil Team Selection Test, 3
Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.
2016 AMC 10, 24
A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length $200$. What is the length of the fourth side?
$\textbf{(A) }200\qquad \textbf{(B) }200\sqrt{2}\qquad\textbf{(C) }200\sqrt{3}\qquad\textbf{(D) }300\sqrt{2}\qquad\textbf{(E) } 500$
2007 ITest, 3
An $\textit{abundant number}$ is a natural number, the sum of whose proper divisors is greater than the number itself. For instance, $12$ is an abundant number: \[1+2+3+4+6=16>12.\] However, $8$ is not an abundant number: \[1+2+4=7<8.\] Which one of the following natural numbers is an abundant number?
$\begin{array}{c@{\hspace{14em}}c@{\hspace{14em}}c} \textbf{(A) }14&\textbf{(B) }28&\textbf{(C) }56\end{array}$
2012 Romania Team Selection Test, 2
Let $\gamma$ be a circle and $l$ a line in its plane. Let $K$ be a point on $l$, located outside of $\gamma$. Let $KA$ and $KB$ be the tangents from $K$ to $\gamma$, where $A$ and $B$ are distinct points on $\gamma$. Let $P$ and $Q$ be two points on $\gamma$. Lines $PA$ and $PB$ intersect line $l$ in two points $R$ and respectively $S$. Lines $QR$ and $QS$ intersect the second time circle $\gamma$ in points $C$ and $D$. Prove that the tangents from $C$ and $D$ to $\gamma$ are concurrent on line $l$.
2020 Balkan MO Shortlist, N3
Given an integer $k\geq 2$, determine all functions $f$ from the positive integers into themselves such that $f(x_1)!+f(x_2)!+\cdots f(x_k)!$ is divisibe by $x_1!+x_2!+\cdots x_k!$ for all positive integers $x_1,x_2,\cdots x_k$.
$Albania$
2003 JHMMC 8, 21
The surface area and the volume of a cube are numerically equal. Find the cube’s volume.
1948 Moscow Mathematical Olympiad, 147
Consider a circle and a point $A$ outside it. We start moving from $A$ along a closed broken line consisting of segments of tangents to the circle (the segment itself should not necessarily be tangent to the circle) and terminate back at $A$. (On the links of the broken line are solid.) We label parts of the segments with a plus sign if we approach the circle and with a minus sign otherwise. Prove that the sum of the lengths of the segments of our path, with the signs given, is zero.
[img]https://cdn.artofproblemsolving.com/attachments/3/0/8d682813cf7dfc88af9314498b9afcecdf77d2.png[/img]
1989 IMO Longlists, 92
Prove that $ a < b$ implies that $ a^3 \minus{} 3a \leq b^3 \minus{} 3b \plus{} 4.$ When does equality occur?
2020 Peru IMO TST, 3
Given a positive integer $n$, let $M$ be the set of all points in space with integer coordinates $(a, b, c)$ such that $0 \le a, b, c \le n$. A frog must go to the point $(0, 0, 0)$ to the point $(n, n, n)$ according to the following rules:
$\bullet$ The frog can only jump to points of M.
$\bullet$ In each jump, the frog can go from point $(a, b, c)$ to one of the following points: $(a + 1, b, c)$, $(a, b + 1, c)$, $(a, b, c + 1)$, or $(a, b, c - 1)$.
$\bullet$ The frog cannot pass through the same point more than once.
In how many different ways can the frog achieve its goal?
1995 South africa National Olympiad, 1
The convex quadrilateral $ABCD$ has area $1$, and $AB$ is produced to $E$, $BC$ to $F$, $CD$ to $G$ and $DA$ to $H$, such that $AB=BE$, $BC=CF$, $CD=DG$ and $DA=AH$. Find the area of the quadrilateral $EFGH$.
2011 USAMO, 2
An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer $m$ from each of the integers at two neighboring vertices and adding $2m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount $m$ and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0. Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.
2009 All-Russian Olympiad Regional Round, 9.5
There are $11$ phrases written on $11$ pieces of paper (one per sheet):
1) To the left of this sheet there are no sheets with false statements.
2) Exactly one sheet to the left of this one contains a false statement.
3) Exactly $2$ sheets to the left of this one contain false statements
...
11) Exactly $10$ sheets to the left of this one contain false statements.
The sheets of paper were laid out in some order in a row, going from left to right. After this, some of the written statements became true and some became false. What is the greatest possible number of true statements?
2017 Azerbaijan Team Selection Test, 1
Find all positive integers $n$ for which all positive divisors of $n$ can be put into the cells of a rectangular table under the following constraints:
[list]
[*]each cell contains a distinct divisor;
[*]the sums of all rows are equal; and
[*]the sums of all columns are equal.
[/list]
2019 India PRMO, 19
Let $AB$ be a diameter of a circle and let $C$ be a point on the segement $AB$ such that $AC : CB = 6 : 7$. Let $D$ be a point on the circle such that $DC$ is perpendicular to $AB$. Let $DE$ be the diameter through $D$. If $[XYZ]$ denotes the area of the triangle $XYZ$, find $[ABD]/[CDE]$ to the nearest integer.
1986 Traian Lălescu, 2.1
Find the real values $ m\in\mathbb{R} $ such that all solutions of the equation
$$ 1=2mx(2x-1)(2x-2)(2x-3) $$
are real.
2014 Estonia Team Selection Test, 4
In an acute triangle the feet of altitudes drawn from vertices $A$ and $B$ are $D$ and $E$, respectively. Let $M$ be the midpoint of side $AB$. Line $CM$ intersects the circumcircle of $CDE$ again in point $P$ and the circumcircle of $CAB$ again in point $Q$. Prove that $|MP| = |MQ|$.
2008 Mathcenter Contest, 7
For every positive integer $n$, $\sigma(n)$ is equal to the sum of all the positive divisors of $n$ (for example, $\sigma(6)=1+2+3+6=12$) . Find the solution of the equation $$\sigma(p^2)=\sigma(q^b)$$ where $p$ and $q$ are primes where $p>q$ and $b$ are positive integers.
[i](gools)[/i]
2004 Cono Sur Olympiad, 5
Using cardboard equilateral triangles of side length $1$, an equilateral triangle of side length $2^{2004}$ is formed. An equilateral triangle of side $1$ whose center coincides with the center of the large triangle is removed.
Determine if it is possible to completely cover the remaining surface, without overlaps or holes, using only pieces in the shape of an isosceles trapezoid, each of which is created by joining three equilateral triangles of side $1$.