This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2012 China Team Selection Test, 3

Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called [i]good[/i], if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have \[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \] Find the number of [i]good[/i] functions.

2020 Moldova Team Selection Test, 3

Let $n$, $(n \geq 3)$ be a positive integer and the set $A$={$1,2,...,n$}. All the elements of $A$ are randomly arranged in a sequence $(a_1,a_2,...,a_n)$. The pair $(a_i,a_j)$ forms an $inversion$ if $1 \leq i \leq j \leq n$ and $a_i > a_j$. In how many different ways all the elements of the set $A$ can be arranged in a sequence that contains exactly $3$ inversions?

1969 IMO Shortlist, 57

Given triangle $ ABC $ with points $ M $ and $ N $ are in the sides $ AB $ and $ AC $ respectively. If $ \dfrac{BM}{MA} +\dfrac{CN}{NA} = 1 $ , then prove that the centroid of $ ABC $ lies on $ MN $ .

2001 Irish Math Olympiad, 2

Tags: geometry
Let $ ABC$ be a triangle with sides $ BC\equal{}a, CA\equal{}b,AB\equal{}c$ and let $ D$ and $ E$ be the midpoints of $ AC$ and $ AB$, respectively. Prove that the medians $ BD$ and $ CE$ are perpendicular to each other if and only if $ b^2\plus{}c^2\equal{}5a^2$.

2023 Estonia Team Selection Test, 1

Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$ Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.

2018 Bulgaria National Olympiad, 4.

Tags: geometry
Let $ABCD$ be a quadrilateral ,circumscribed about a circle. Let $M$ be a point on the side $AB$. Let $I_{1}$,$I_{2}$ and $I_{3}$ be the incentres of triangles $AMD$, $CMD$ and $BMC$ respectively. Prove that $I_{1}I_{2}I_{3}M$ is circumscribed.

2015 Turkey MO (2nd round), 4

In an exhibition where $2015$ paintings are shown, every participant picks a pair of paintings and writes it on the board. Then, Fake Artist (F.A.) chooses some of the pairs on the board, and marks one of the paintings in all of these pairs as "better". And then, Artist's Assistant (A.A.) comes and in his every move, he can mark $A$ better then $C$ in the pair $(A,C)$ on the board if for a painting $B$, $A$ is marked as better than $B$ and $B$ is marked as better than $C$ on the board. Find the minimum possible value of $k$ such that, for any pairs of paintings on the board, F.A can compare $k$ pairs of paintings making it possible for A.A to compare all of the remaining pairs of paintings. [b]P.S:[/b] A.A can decide $A_1>A_n$ if there is a sequence $ A_1 > A_2 > A_3 > \dots > A_{n-1} > A_n$ where $X>Y$ means painting $X$ is better than painting $Y$.

2022 CMIMC Integration Bee, 4

\[\int_0^1 \sqrt{x}\log(x)\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2012 NIMO Summer Contest, 7

A permutation $(a_1, a_2, a_3, \dots, a_{2012})$ of $(1, 2, 3, \dots, 2012)$ is selected at random. If $S$ is the expected value of \[ \sum_{i = 1}^{2012} | a_i - i |, \] then compute the sum of the prime factors of $S$. [i]Proposed by Aaron Lin[/i]

2023 Harvard-MIT Mathematics Tournament, 4

Tags: guts
A [i]standard $n$-sided die[/i] has $n$ sides labeled $1$ to $n.$ Luis, Luke, and Sean play a game in which they roll a fair standard $4$-sided die, a fair standard $6$-sided die, and a fair standard $8$-sided die, respectively. They lose the game if Luis's roll is less than Luke's roll, and Luke's roll is less than Sean's roll. Compute the probability that they lose the game.

2004 Pan African, 3

Tags:
One writes 268 numbers around a circle, such that the sum of 20 consectutive numbers is always equal to 75. The number 3, 4 and 9 are written in positions 17, 83 and 144 respectively. Find the number in position 210.

2022 Auckland Mathematical Olympiad, 11

For which $k$ the number $N = 101 ... 0101$ with $k$ ones is a prime?

2017 Kyiv Mathematical Festival, 1

Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have both of their neighbours remained and exactly one third of the dwarves have only one of their neighbours remained, if the number of the dwarves is a) 6; b) 9?

1984 IMO Shortlist, 14

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

2015 Spain Mathematical Olympiad, 3

On the board is written an integer $N \geq 2$. Two players $A$ and $B$ play in turn, starting with $A$. Each player in turn replaces the existing number by the result of performing one of two operations: subtract 1 and divide by 2, provided that a positive integer is obtained. The player who reaches the number 1 wins. Determine the smallest even number $N$ requires you to play at least $2015$ times to win ($B$ shifts are not counted).

2022 Austrian MO National Competition, 2

The points $A, B, C, D$ lie in this order on a circle with center $O$. Furthermore, the straight lines $AC$ and $BD$ should be perpendicular to each other. The base of the perpendicular from $O$ on $AB$ is $F$. Prove $CD = 2 OF$. [i](Karl Czakler)[/i]

PEN O Problems, 10

Tags:
Let $m \ge 2$ be an integer. Find the smallest integer $n>m$ such that for any partition of the set $\{m,m+1,\cdots,n\}$ into two subsets, at least one subset contains three numbers $a, b, c$ such that $c=a^{b}$.

2023 Turkey EGMO TST, 1

Let $O_1O_2O_3$ be an acute angled triangle.Let $\omega_1$, $\omega_2$, $\omega_3$ be the circles with centres $O_1$, $O_2$, $O_3$ respectively such that any of two are tangent to each other. Circumcircle of $O_1O_2O_3$ intersects $\omega_1$ at $A_1$ and $B_1$, $\omega_2$ at $A_2$ and $B_2$, $\omega_3$ at $A_3$ and $B_3$ respectively. Prove that the incenter of triangle which can be constructed by lines $A_1B_1$, $A_2B_2$, $A_3B_3$ and the incenter of $O_1O_2O_3$ are coincide.

2016 Indonesia TST, 1

Let $n \ge 3$ be a positive integer. We call a $3 \times 3$ grid [i]beautiful[/i] if the cell located at the center is colored white and all other cells are colored black, or if it is colored black and all other cells are colored white. Determine the minimum value of $a+b$ such that there exist positive integers $a$, $b$ and a coloring of an $a \times b$ grid with black and white, so that it contains $n^2 - n$ [i]beautiful[/i] subgrids.

2018-2019 SDML (High School), 5

Tags:
The graph of the equation $y = ax^2 + bx + c$ is shown in the diagram. Which of the following must be positive? [DIAGRAM NEEDED] $ \mathrm{(A) \ } a \qquad \mathrm{(B) \ } ab^2 \qquad \mathrm {(C) \ } b - c \qquad \mathrm{(D) \ } bc \qquad \mathrm{(E) \ } c - a$

2010 AMC 10, 3

Tags:
A drawer contains red, green, blue, and white socks with at least 2 of each color. What is the minimum number of socks that must be pulled from the drawer to guarantee a matching pair? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

2011 Middle European Mathematical Olympiad, 5

Tags: symmetry , geometry
Let $ABCDE$ be a convex pentagon with all five sides equal in length. The diagonals $AD$ and $EC$ meet in $S$ with $\angle ASE = 60^\circ$. Prove that $ABCDE$ has a pair of parallel sides.

1999 Nordic, 1

The function $f$ is defined for non-negative integers and satisfies the condition $f(n) = f(f(n + 11))$, if $n \le 1999$ and $f(n) = n - 5$, if $n > 1999$. Find all solutions of the equation $f(n) = 1999$.

1955 AMC 12/AHSME, 41

Tags:
A train traveling from Aytown to Beetown meets with an accident after $ 1$ hr. It is stopped for $ \frac{1}{2}$ hr., after which it proceeds at four-fifths of its usual rate, arriving at Beetown $ 2$ hr. late. If the train had covered $ 80$ miles more before the accident, it would have been just $ 1$ hr. late. The usual rate of the train is: $ \textbf{(A)}\ \text{20 mph} \qquad \textbf{(B)}\ \text{30 mph} \qquad \textbf{(C)}\ \text{40 mph} \qquad \textbf{(D)}\ \text{50 mph} \qquad \textbf{(E)}\ \text{60 mph}$

2015 BMT Spring, 16

Five points $A, B, C, D$, and $E$ in three-dimensional Euclidean space have the property that $AB = BC = CD = DE = EA = 1$ and $\angle ABC = \angle BCD =\angle CDE = \angle DEA = 90^o$ . Find all possible $\cos(\angle EAB)$.