This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1947 Moscow Mathematical Olympiad, 132

Given line $AB$ and point $M$. Find all lines in space passing through $M$ at distance $d$.

1994 Tournament Of Towns, (418) 6

Consider a convex quadrilateral $ABCD$. Pairs of its opposite sides are continued until they intersect: $BA$ and $CD$ at the point $P$, $BC$ and $AD$ at the point $Q$. Let $K$ be the intersection point of the exterior bisectors of the angles $A$ and $C$ of the quadrilateral, $L$ be the intersection point of the exterior bisectors of the angles $B$ and $D$ of the quadrilateral, and $M$ be the intersection point of the exterior bisectors of the angles $P$ and $Q$ (the exterior bisector of an angle $X$ is the line passing through X and perpendicular to its ordinary bisector). Prove that the points $K$, $L$ and $M$ lie on a straight line. (S Markelov)

2019 Baltic Way, 19

Prove that the equation $7^x=1+y^2+z^2$ has no solutions over positive integers.

2018 Polish Junior MO Second Round, 5

Each integer has been colored in one of three colors. Prove that exist two different numbers of the same color, whose difference is a perfect square.

2022 HMNT, 6

Tags: geometry
In a plane, equilateral triangle $ABC$, square $BCDE$, and regular dodecagon $DEFGHIJKLMNO$ each have side length 1 and do not overlap. Find the area of the circumcircle of $\triangle AFN$.

2023 Bulgaria JBMO TST, 4

Given is a set of $n\ge5$ people and $m$ commissions with $3$ persons in each. Let all the commissions be [i]nice[/i] if there are no two commissions $A$ and $B$, such that $\mid A\cap B\mid=1$. Find the biggest possible $m$ (as a function of $n$).

2017 India IMO Training Camp, 3

Let $a$ be a positive integer which is not a perfect square, and consider the equation \[k = \frac{x^2-a}{x^2-y^2}.\] Let $A$ be the set of positive integers $k$ for which the equation admits a solution in $\mathbb Z^2$ with $x>\sqrt{a}$, and let $B$ be the set of positive integers for which the equation admits a solution in $\mathbb Z^2$ with $0\leq x<\sqrt{a}$. Show that $A=B$.

1995 AMC 8, 20

Tags: probability
Diana and Apollo each roll a standard die obtaining a number at random from $1$ to $6$. What is the probability that Diana's number is larger than Apollo's number? $\text{(A)}\ \dfrac{1}{3} \qquad \text{(B)}\ \dfrac{5}{12} \qquad \text{(C)}\ \dfrac{4}{9} \qquad \text{(D)}\ \dfrac{17}{36} \qquad \text{(E)}\ \dfrac{1}{2}$

2003 China Team Selection Test, 3

There is a frog in every vertex of a regular 2n-gon with circumcircle($n \geq 2$). At certain time, all frogs jump to the neighborhood vertices simultaneously (There can be more than one frog in one vertex). We call it as $\textsl{a way of jump}$. It turns out that there is $\textsl{a way of jump}$ with respect to 2n-gon, such that the line connecting any two distinct vertice having frogs on it after the jump, does not pass through the circumcentre of the 2n-gon. Find all possible values of $n$.

1977 All Soviet Union Mathematical Olympiad, 241

Every vertex of a convex polyhedron belongs to three edges. It is possible to circumscribe a circle around all its faces. Prove that the polyhedron can be inscribed in a sphere.

2024 Vietnam National Olympiad, 4

$k$ marbles are placed onto the cells of a $2024 \times 2024$ grid such that each cell has at most one marble and there are no two marbles are placed onto two neighboring cells (neighboring cells are defined as cells having an edge in common). a) Assume that $k=2024$. Find a way to place the marbles satisfying the conditions above, such that moving any placed marble to any of its neighboring cells will give an arrangement that does not satisfy both the conditions. b) Determine the largest value of $k$ such that for all arrangements of $k$ marbles satisfying the conditions above, we can move one of the placed marble onto one of its neighboring cells and the new arrangement satisfies the conditions above.

2016 BMT Spring, 10

What is the smallest possible perimeter of a triangle with integer coordinate vertices, area $\frac12$, and no side parallel to an axis?

2022 Brazil National Olympiad, 1

A single player game has the following rules: initially, there are $10$ piles of stones with $1,2,...,10$ stones, respectively. A movement consists on making one of the following operations: i) to choose $2$ piles, both of them with at least $2$ stones, combine them and then add $2$ stones to the new pile; ii) to choose a pile with at least $4$ stones, remove $2$ stones from it, and then split it into two piles with amount of piles to be chosen by the player. The game continues until is not possible to make an operation. a) Give an example of a sequence of moves leading to the end of the game. b) Make a table with the total number of stones and the number of piles before and after the first 5 operations in your example above. c) Show that the number of piles with one stone in the end of the game is always the same, no matter how the movements are made.

2010 Contests, 4

Find all positive integers $N$ such that an $N\times N$ board can be tiled using tiles of size $5\times 5$ or $1\times 3$. Note: The tiles must completely cover all the board, with no overlappings.

2006 France Team Selection Test, 1

In a $2\times n$ array we have positive reals s.t. the sum of the numbers in each of the $n$ columns is $1$. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}4$.

2013 JBMO Shortlist, 1

Find the maximum number of different integers that can be selected from the set $ \{1,2,...,2013\}$ so that no two exist that their difference equals to $17$.

1993 IMO Shortlist, 8

The vertices $D,E,F$ of an equilateral triangle lie on the sides $BC,CA,AB$ respectively of a triangle $ABC.$ If $a,b,c$ are the respective lengths of these sides, and $S$ the area of $ABC,$ prove that \[ DE \geq \frac{2 \cdot \sqrt{2} \cdot S}{\sqrt{a^2 + b^2 + c^2 + 4 \cdot \sqrt{3} \cdot S}}. \]

2019 Switzerland - Final Round, 8

An integer $n\ge2$ is called [i]resistant[/i], if it is coprime to the sum of all its divisors (including $1$ and $n$). Determine the maximum number of consecutive resistant numbers. For instance: * $n=5$ has sum of divisors $S=6$ and hence is resistant. * $n=6$ has sum of divisors $S=12$ and hence is not resistant. * $n=8$ has sum of divisors $S=15$ and hence is resistant. * $n=18$ has sum of divisors $S=39$ and hence is not resistant.

Mid-Michigan MO, Grades 5-6, 2007

[b]p1.[/b] The Evergreen School booked buses for a field trip. Altogether, $138$ people went to West Lake, while $115$ people went to East Lake. The buses all had the same number of seats, and every bus has more than one seat. All seats were occupied and everybody had a seat. How many seats were there in each bus? [b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $50$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a 6 cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $150$ coins? [b]p3.[/b] Pinocchio multiplied two $2$ digit numbers. But witch Masha erased some of the digits. The erased digits are the ones marked with a $*$. Could you help Pinocchio to restore all the erased digits? $\begin{tabular}{ccccc} & & & 9 & 5 \\ x & & & * & * \\ \hline & & & * & * \\ + & 1 & * & * & \\ \hline & * & * & * & * \\ \end{tabular}$ Find all solutions. [b]p4.[/b] There are $50$ senators and $435$ members of House of Representatives. On Friday all of them voted a very important issue. Each senator and each representative was required to vote either "yes" or "no". The announced results showed that the number of "yes" votes was greater than the number of "no" votes by $24$. Prove that there was an error in counting the votes. [b]p5.[/b] Was there a year in the last millennium (from $1000$ to $2000$) such that the sum of the digits of that year is equal to the product of the digits? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2001 Tournament Of Towns, 4

Tags: geometry
On top of a thin square cake are triangular chocolate chips which are mutually disjoint. Is it possible to cut the cake into convex polygonal pieces each containing exactly one chip?

2017 China Girls Math Olympiad, 5

Let $0=x_0<x_1<\cdots<x_n=1$ .Find the largest real number$ C$ such that for any positive integer $ n $ , we have $$\sum_{k=1}^n x^2_k (x_k - x_{k-1})>C$$

2015 CCA Math Bonanza, TB2

If $a,b,c$ are the roots of $x^3+20x^2+1x+5$, compute $(a^2+1)(b^2+1)(c^2+1)$. [i]2015 CCA Math Bonanza Tiebreaker Round #2[/i]

1969 AMC 12/AHSME, 20

Tags:
Let $P$ equal the product of $3,659,893,456,789,325,678$ and $342,973,489,379,256$. The number of digits in $P$ is: $\textbf{(A) }36\qquad \textbf{(B) }35\qquad \textbf{(C) }34\qquad \textbf{(D) }33\qquad \textbf{(E) }32$

2000 Romania National Olympiad, 2b

If $a, b, c$ represent the lengths of the sides of a triangle, prove that: $$\frac{a}{b-a+c}+ \frac{b}{b-a+c}+ \frac{c}{b-a+c} \ge 3$$

1965 All Russian Mathematical Olympiad, 065

Quasi-rounding is a substitution one of the two closest integers instead of the given number. Given $n$ numbers. Prove that you can quasi-round them in such a way, that a sum of every subset of quasi-rounded numbers will deviate from the sum of the same subset of initial numbers not greater than $(n+1)/4$ .